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Mesoscale lonospheric Irregularity Oval at High Latitudes Observed
by Global GNSS Networks (2010-2024)
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This study investigates high-latitude ionospheric mesoscale irregularities associated with energetic particle precipitation and
magnetosphere-ionosphere-thermosphere coupling processes within the auroral oval using ground-based Global Navigation
Satellite Systems (GNSS) total electron content (TEC) measurements. This scale size is much larger than those associated with
GNSS scintillations, which range from sub-kilometers (small scales) to > 10 km (large scales). Analyzing 15 yr of data from 2010
to 2024, we characterize, for the first time, the climatology of enhanced intensity of ionospheric mesoscale irregularities at
high latitudes. The observed intensity of irregularities in GNSS TEC fluctuations can serve as a proxy for the dynamic behavior
of the auroral oval which varies with magnetic local time, longitude, latitude, season, solar activity cycle, geomagnetic
disturbances, and hemisphere. The spatial distribution of the irregularity is oval-shaped and therefore this pattern is named as
“irregularity oval”; the morphology of the irregularity oval is generally aligned well with the known variations of auroral oval
established by using other technologies. While the primary goal has been to document systematically these irregularity long-
term observations, future work will focus on the development of a novel GNSS TEC-based “irregularity oval” model.
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1.INTRODUCTION aligned currents (FACs) flow along closed, high-latitude
magnetic field lines that map to the plasma sheet in the
The auroral oval, a ring-shaped region encircling magnetotail and close through the auroral electrojet region
Earth’s magnetic poles, signifies the upper-atmospheric in the ionosphere which forms the oval encircling the
footprint of charged particles from the solar wind and the geomagnetic poles (lijima & Potemra 1976).
magnetosphere that are guided along Earth’s magnetic field The offset between the geographic and magnetic poles,
lines. The oval is typically located between about 65° and along with the tilt of Earth’s magnetic dipole, causes
75° magnetic latitude under quiet geomagnetic conditions. the auroral oval to appear asymmetrical in geographic
There, these energetic particles collide with oxygen and coordinates but more circular in geomagnetic coordinates.
nitrogen, emitting visible lights as aurora (Feldstein & However, asymmetry between day and night as well as dawn
Starkov 1967; Holzworth & Meng 1975; Evans 1986; Kivelson and dusk does exist in the magnetic coordinates.
& Russell 1995; Ebihara & Ejiri 2000; Grocott et al. 2009). The The latitudinal span of the auroral zone depends on the
auroral oval is maintained by magnetospheric convection radial distance in the plasma sheet, local time sector, and
driven by dayside reconnection and nightside substorms. geomagnetic activity and solar wind and interplanetary
The nightside portion of the oval is typically broader than magnetic field (IMF) conditions. In particular, on day side,
the dayside, reflecting enhanced particle injection from particle precipitation comes from cusp and boundary layer
the plasma sheet and expansion of the westward electrojet sources, and the oval is typically narrower in latitude here. On
during substorm activity (Lockwood & Cowley 1993). Field- nightside, more intense and broader auroral activity due to
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plasma sheet injections and substorm equatorward expansion
(Sergeev et al. 2012). At dawn/dusk sectors, asymmetries arise
from the east-west electrojets and IMF By effects.

The precise location of the auroral oval can be determined
using a combination of satellite-based imaging, ground-based
optical observations, magnetometer arrays, in situ particle
measurements, and other ionospheric measurements.
Ultraviolet (UV) imagers onboard satellites such as POLAR,
IMAGE, and DMSP provide global views of auroral emissions
in the far-ultraviolet (FUV), enabling accurate mapping of
the large-scale structure inside the oval (Frey et al. 2001;
Zhang & Paxton 2008). Ground-based all-sky imaging (ASI)
cameras offer high-resolution optical imagery of auroras in
visible wavelengths (e.g., 557.7 and 630.0 nm), revealing fine-
scale features and temporal evolution (Shiokawa et al. 1996;
Donovan et al. 2006). Arrays of ground magnetometers, such
as SuperMAG and IMAGE, track variations in horizontal
magnetic fields to infer the strength and location of auroral
electrojets, which align closely with the auroral oval (Gjerloev
2012). In situ particle detectors on satellites like DMSP and
FAST measure precipitating energetic electrons and ions,
directly identifying the boundaries of particle precipitation
that define the auroral region (Newell et al. 1996). The
THEMIS mission has significantly enhanced understanding
of auroral dynamics by combining a constellation of satellites
with ground-based ASIs and magnetometers, enabling direct
observations of substorm onset and the temporal evolution
of auroral structures (Angelopoulos 2008). The fluxgate
magnetometer (FGM) onboard CHAMP provides extensive
FAC density estimations which were used to develop a
new auroral oval model, assuming the FAC enhancements
occur within the oval (Xiong & Liihr 2014; Xiong et al. 2014).
Additionally, high-latitude incoherent scatter radars (e.g.,
EISCAT, PFISR) detect ionospheric responses to auroral
activity, such as enhanced electron densities and ion drifts
(Nicolls & Heinselman 2007). These diverse measurements
feed into empirical models, such as the OVATION Prime
model, which statistically characterizes the location and
intensity of auroras (Newell et al. 2014).

Global Navigation Satellite Systems (GNSS), such as GPS,
GLONASS, and Galileo, have become powerful tools for
auroral science, particularly in studying the ionospheric
disturbances that accompany the auroral activity. When
GNSS signals pass through the auroral ionosphere, they are
affected by variations in electron density, especially during
geomagnetic storms and substorms. Dual-frequency GNSS
receivers are widely used to derive total electron content
(TEC), which provides critical insights into electron density
variations caused by particle precipitation, polar cap
patches, subauroral ionospheric structures, and traveling
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ionospheric disturbances (Foster & Burke 2002; Foster
et al. 2005; Zhang et al. 2013; Zou et al. 2014; Zhang et al.
2017a; Lyons et al. 2019; Zhang et al. 2019b; Nishimura et al.
2020; Zou et al. 2021; Zhang et al. 2022). Auroral processes
also induce phase and amplitude scintillations of GNSS
signals, making GNSS a powerful tool for detecting plasma
irregularities and turbulence in the auroral ionosphere.
The ionospheric irregularities can be monitored by using a
GNSS index, ROTI (Rate of TEC Index change), as originally
proposed by Pi et al. (1997) and now widely used for high,
midlatitude, and equatorial science (Jakowski et al. 2012;
Cherniak et al. 2014, 2018; Mrak et al. 2020; Sun et al.
2024). This index characterizes the intensity of the GNSS
phase fluctuations caused by ionospheric irregularities.
The present study, however, analyzed the mesoscale
component of the TEC fluctuations, denoted as differential
TEC (dTEC), to characterize the intensity of ionospheric
irregularities inside the auroral over and polar cap region.
The spatiotemporal scales of these irregularities are much
larger than those associated with GNSS scintillations,
ranging from sub-kilometers (small scales) to > 10 km
(large scales). The dTEC method, which will be described in
Section 2, has been widely utilized in the study of traveling
ionospheric disturbances (TIDs; Saito et al. 1998) and
ionospheric penetration electric field (Zhang et al. 2023). In
the high-latitude region, dTEC could be related not only to
TIDs, but also to ionization enhancement caused by sudden
deposition of energetic particles, as well as to small intensity
of plasma patches (Nishimura et al. 2020).

Global GNSS TEC data have been produced daily at
Massachusetts Institute of Technology (MIT) Haystack
Observatory since the start of widely scientific application
of GPS data around 2000 and are archived in the Madrigal
database (http://openmadrigal.org) for public use. Using
these extensive GNSS data from 2010 to 2024, we explore
the general climatology of mesoscale fluctuation levels of
ionospheric electron density and establish their connection
with the morphology and dynamics of the auroral oval.

2. DATA AND METHODS

MIT Haystack Observatory has developed the MAPGPS
software suite to process GNSS observations, enabling the
generation of global maps of TEC (Rideout & Coster 2006;
Vierinen et al. 2016). The system currently utilizes data
from over 6,000 global receivers contributed by community
members, with a significant portion, exceeding 3,000,
originating from the American sector. This extensive dataset
comprises an astonishing 150 million line-of-sight (LOS)



segments every single day. These LOS data enable the daily
determination of TEC fluctuations, which are calculated as
differential TEC (dTEC). This continuous spatial-temporal
coverage provides the necessary information for the
systematic statistics presented here.

Ionospheric perturbation in TEC, dTEC, is obtained
by detrending the smooth background vertical TEC
variations using LOS slant TEC data from each individual
pair of receiver-GNSS satellite. This general approach was
initially proposed by Saito et al. (1998) and is now widely
adopted by the community to study TIDs (Ding et al. 2007;
Zakharenkova et al. 2016; Zhang et al. 2017b; Chou et al.
2018; Mrak et al. 2018; Inchin et al. 2023).

In the present study, the background vertical TEC is
determined by using a low-pass filter (Savitzky & Golay
1964) with a linear basis function within a 30-minute
sliding window (Coster et al. 2017; Zhang et al. 2017b,
2019a). The filter algorithm uses a convolution process
with least squares fitting of successive subsets of windows
of 30 minutes involving time-adjacent TEC data points
from the same GNSS satellite-receiver pair and a linear
basis function set. The 30-minute window is appropriate
in detecting medium scale irregularities most effectively at
midlatitudes or for structures moving below 300-400 m/s; but
for high latitudes with convective speeds above 1,000 m/s,
the scale size of the irregularities can be up to 2,000 km. A
15° cut-off elevation for receiver-satellite ray paths was used
to eliminate data close to the horizon. Data at the start and
the end of each continuous segment from the same GNSS
satellite-receiver pair were disregarded to avoid potential
“edge” effects (Zhang et al. 2019a, 2021), which arise
because of lack of data in the 30-min window centering
around the data edge. The dTEC accuracy is based on the
GNSS phase measurement error, which is often less than
0.03 TEC unit (TECu, 1 TECu = 1 x 10" el/m?) (Coster et al.
2012), as all satellite and receiver bias terms cancel out in a
differential sense. These dTEC values have been extensively
used in studies related to TIDs such as those associated with
solar eclipses, solar flares, solar terminator, geospace storms
and substorms, volcanic eruptions, and lower atmospheric
forcing (Zhang et al. 2017b; Lyons et al. 2019; Zhang et al.
2019a, b; Nishimura et al. 2020; England et al. 2021; Zhang
et al. 2021, 2022; Chang et al. 2022; Lu et al. 2024; Tyska et al.
2024; Schmidt et al. 2025; Trop et al. 2025) and sudden global
ionospheric disturbances associated with the penetration
electric field (Zhang et al. 2023).

Fig. 1 provides some examples of TEC observations, the
smooth background, as well as the fluctuation component
(denoted as dTEC) along with GNSS satellite elevation and
ionospheric pierce point information. The observations
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in (a) and (b) came from stations underneath the auroral
region during the 7 September 2017 intense geomagnetic
storm, where fluctuations up to + 1.5 TECu can be found in
(a) and + 4 TECu in (b). (c) and (d) were at higher latitudes
where the clear oscillations in (c) are potentially related to
TIDs on 7 September 2017 and the large density spikes of
~30 TECu in (d) were likely plasma patches on 10 October
2024.

It is important to note that the GNSS observations
collected using the MIT TEC processing system have varying
temporal resolutions. While a significant portion of the data
has a sampling rate of 1 min, 1-sec sampling rate is also
widely available. Therefore, we resampled the data with a
standard rate of 15 sec through either resampling or linear
interpolation. After this procedure, the data is subjected
to filtering and detrending steps to calculate dTEC, as
mentioned earlier. The final dTEC are resampled data with
the original temporal resolution.

To characterize the intensity of irregularities, an
additional binning step is taken in the present study. dTEC
is binned into 1° longitude x 1° latitude x 5 min time bins.
For each bin, an average value of [dTEC| (the absolute dTEC
value), denoted as aTEC, is determined to represent the
fluctuation intensity (amplitude). This bin size should be
able to resolve the mean state of mesoscale fluctuations. The
relative (percentage) intensity (amplitude) pTEC is defined
as pTEC = aTEC/TEC, where TEC here is the bin average
derived as for aTEC. The main focus of this study is to
analyze these parameters at high latitudes during the period
from 2010 to 2024. Fig. 2 shows TEC, aTEC, dTEC standard
deviation, and pTEC obtained in the northern polar region
at 0600 and 1800 UT during spring 2023. Combining data
from the two UTs allows to piece together a full picture in
the polar region. It is evident that aTEC and the standard
deviation of dTEC exhibit similar characteristics: the dayside
intense activity is bounded at ~75° apex latitudes, while the
nightside intense activity is bounded at ~60°. Consequently,
in our subsequent sections, we will use aTEC as proxy to
quantify the intensity of irregularities.

3.RESULTS

In the following, we present the GNSS observational
climatology of mesoscale irregularity at high latitudes
presumably overlapping with the region of enhanced
auroral activities. The aTEC averages over a given season
or year as a function of UT or LT are calculated. To derive
the seasonal averages from multiple-month data, daily
observations are used for averaging, whereas for yearly
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Fig. 1. GNSS line-of-sight TEC measurements. Sample vertical TEC data (blue line) from a specific LOS between each receiver-GNSS satellite pair, as well as the
smooth background trend (red line) and the detrended component of TEC fluctuations (gray line), with IPP trajectory and satellite elevation information. (a) and (b)
for the subauroral to auroral latitude span in the evening hours; (c) for the polar region in the afternoon with small (< 1 TECu) fluctuations; (d) for the polar region
in the early afternoon with large density fluctuations (likely patches). TEC, total electron content; LOS, line-of-sight; GNSS, Global Navigation Satellite Systems; IPP,
ionospheric pierce point.
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Fig. 2. Polar region GNSS TEC parameters. Polar view of GNSS ionospheric observations in the northern hemisphere at 06 UT (top panels) and 18 UT (bottom
panels) as seasonal averages during spring 2023 for TEC (in TECu, column 1), the dTEC absolute value denoted as aTEC (in TECu, column 2), dTEC standard deviation
(inTECu, column 3), and the dTEC absolute value in percentage fraction denoted as pTEC (column 4). Black light lines are Apex iso-latitudes up to 75° at 15° interval.
The shadowed region stands for the nightside. GNSS, Global Navigation Satellite Systems; TEC, total electron content.

https://doi.org/10.5140/JASS.2025.42.4.119 122



Shun-Rong Zhang et al. GNSS Observed Irregularity Oval

averages, only 10-quietest days in each month are used for 3.1 UT and LT Time-Dependent Variations

averaging. Section 3.4 on geomagnetic disturbance effects

and Section 3.5 on solar cycle dependence show results of Polar views for a given UT provide snapshots of high-
grouping according to the geomagnetic activity. latitude longitudinal and latitudinal variations. Figs. 3 and

4 show yearly average patterns of UT-dependent aTEC
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2024 21:00UT

s
H
H
H

| h
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Fig. 3. Irregularity intensity UT dependency for 2024. Polar region aTEC patterns at different UTs as yearly averages for a high solar activity year of 2024 (excluding
“international 5 most disturbed days”). The shadowed region stands for the nightside in winter and the red and black dashed lines represent local noon and
midnight, respectively. TEC, total electron content.
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Fig. 4. Irregularity intensity UT dependency for 2018. Polar region aTEC patterns at different UTs as yearly averages for a low solar activity year of 2018 (excluding
“international 5 most disturbed days”). The shadowed region stands for the nightside in winter and the red and black dashed lines represent local noon and
midnight, respectively. TEC, total electron content.
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variations in the northern hemisphere for 2024 and 2018,
respectively.

In 2024, the large aTEC (= 0.4 TECu) occurs within the
general area of apex latitude > 60°N, being closer to >
75°N on dayside and extended toward ~65°N on nightside.
However, some of the largest aTEC is observed near apex
latitudes 67°N-68°N on nightside (0.7 TECu at 03 UT and 21

2024 00:00LT 2024 03:00LT

oLT

2024 15:0

2
120°W 10! B0°W 75°W  60°W

o el

UT) and ~80°N on dayside (0.75 TECu at 15 UT and 18 UT).
The dayside aTEC is generally larger than on the nightside.
In 2018 during very low solar activity, however, the location
of aTEC enhancement zone is similar to that in 2024, though
the aTEC is generally smaller in 2018 than in 2024.
LT-dependence can be identified from Figs. 5 and 6. From
03-12 LT, the enhancement zone moves from apex latitude
2024 09:00LT

2024 06:00LT atec (TECu)

120°W 105°W

Fig. 5. Irregularity intensity local time dependency for 2024. Polar region aTEC patterns at different LTs as yearly averages for a high solar activity year of 2024
(excluding “international 5 most disturbed days”). The shadowed region stands for the nightside in winter and the red and black dashed lines represent local noon

and midnight, respectively. TEC, total electron content.
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Fig. 6. Irregularity intensity local time dependency for 2018. Polar region aTEC patterns at different LTs as yearly averages for a low solar activity year of 2018
(excluding “international 5 most disturbed days”). The shadowed region stands for the nightside in winter and the red and black dashed lines represent local noon

and midnight, respectively. TEC, total electron content.
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65°N toward 70°N, and from 12-21 LT, it moves backwards
toward lower latitudes. The same trends are developed
in both low and high solar activity years 2024 and 2018,
however, inside the polar cap, the enhancements during
daytime hours are more evident in the high solar activity
year 2024 (~0.7 TECu) than in the low solar activity year
2018 (~0.4 TECu). The nightside enhancement zones are
wider in local time sectors close to the midnight for both
solar activity levels.

While the exact reasons for high aTEC values on the
dayside and during high solar activity years remain an
important question for future studies, it is worth noting
the following factors: (1) the energetic particles flux can be
more intense as a result of dayside reconnection; (2) the
proton precipitation more likely on dayside carries more
energy; (3) the magnetic field geometry can influence the
precipitation efficiency; and (4) the higher conductivity on
dayside and during high solar activity years can modify the
magnetosphere-ionosphere coupling.

3.2 Seasonal Dependency

To evaluate the seasonal dependency of aTEC, 3-month
averages centering on the equinox and solstice months,
respectively, are obtained and shown in Figs. 7 and 8 for the
high solar activity years between 2022-2023.

In Fig. 7, results for 06 and 18 UT provide complementary
spatial coverage on both dayside and nightside. On
nightside (as shown for 06 UT), although the aTEC intensity

WINTER2022 06:00UT
o ey

ASDEHE'
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is consistently strong above apex latitude 65°N, equinox
seasons exhibit higher intensities (0.7-0.75 TECu), whereas
solstice seasons exhibit much weaker aTEC intensities
(0.4-0.6 TECu). On the dayside (as shown for 18 UT), while
aTEC intensification is consistently confined to above apex
latitude 68°N, aTEC shows intensification only in the narrow
noon sector at ~0.65 TECu levels in summer and fairly so in
autumn. Interestingly, in these two seasons of low intensity
of irregularities, at 18 UT, the 75° apex latitude circle is
entirely sunlit with large background ionospheric density.

The midnight and noon results are further compared
in Fig. 8. Again, equinox seasons are characterized with
higher intensity, particularly on nightside within the
auroral oval and into the polar cap, with the low latitude
boundary being more equatorward. Winter and summer
solstices exhibit smaller aTEC. One possible explanation
for the high aTEC in equinox is the stronger geomagnetic
disturbance as the IMF projection onto Earth’s field lines
maximizes the Bz component (Russell & McPherron 1973).
On dayside, while high aTEC in equinox confines to apex
latitudes > 75°N, aTEC in winter appears abnormally high.
This winter dayside feature remains an interesting scientific
topic for further research to clarify whether the low
ionospheric conductivity leads to stronger energetic particle
precipitation.

3.3 Hemispheric Differences

Hemispheric differences in the aTEC intensity can be

AUTUMN 2023 06:00UT atec (TECu)

gt
T G0E 75°E O0°E 105°E 120

Fig. 7. Irregularity intensity seasonal dependency for different UTs. Polar aTEC patterns as seasonal averages from winter 2022 to autumn 2023 at 06 and 18

UT. Each season uses 3-month’ worth of observations for averaging. Note the terminator is shown for the beginning month of the 3-month seasonal bin (e.g.,
November for winter, February for spring, May for summer, and August for autumn). TEG, total electron content.
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Fig. 8. Irregularity intensity seasonal dependency for midday and midnight. Polar aTEC patterns as seasonal averages from winter 2022 to autumn 2023 at 00 and
12 LT. Each season uses 3-month’ worth of observations for averaging. Note the terminator is shown for the beginning month of the 3-month seasonal bin (e.g.,
November for winter, February for spring, May for summer, and August for autumn). TEC, total electron content.

observed according to LT. Fig. 9 shows these results as yearly
averages for 2018 and 2024 with dramatically different solar
activity levels. Although large data gaps in the southern
hemisphere, general auroral oval can still be identified. The
band of enhanced aTEC area is organized based on apex
magnetic latitudes, with the midnight band being 10° wide
starting at apex 65°N/S, and the midday band starting at
apex 75°N/S. The main differences, however, lie in the aTEC
intensity. At midnight, the northern hemispheric intensity in
the auroral oval is considerably higher, whereas at noon, the
northern hemispheric intensity in the cusp region is weaker.
This is the case in both low and high solar activity years, and
in the low solar activity year 2018 it is more evident.

3.4 Geomagnetic Disturbance Effects

Our statistical analysis has used all of the everyday
observations in Figs 2, 7, and 8 to calculate seasonal
averages, but only “international 10 quietest days” in each
month in Figs. 3-6, and 9 to calculate yearly averages. In this
section, we compare results obtained during “international
10 quietest days” (hereafter “quiet days”) and “international
5 most disturbed days” (hereafter “disturbed days”).

Fig. 10 demonstrates such geomagnetic disturbance
effects for spring 2023 as a function of UT and LT. The results
obtained on those quiet days indicate GNSS TEC responses
to a background precipitation effect, which likely includes
the diffuse aurora caused by wave-particle scattering in the
plasma sheet, as well as other processes. These responses

https://doi.org/10.5140/JASS.2025.42.4.119

require a dedicated analysis. The low-latitude boundary of
the auroral oval represented by aTEC activity during quiet
days is confined to higher apex magnetic latitudes, being 2°-
3° higher in latitude than that during disturbed days, and the
intensity enhancement in aTEC during quiet days is clearly
weaker and occurs more likely at higher latitudes. The high-
latitude boundary of the auroral oval as seen in aTEC moves
also poleward during disturbed conditions. Overall, the
entire oval is expanded and activities are intensified during
disturbed days. This feature will be further demonstrated in
Figs. 11 and 12.

3.5 Solar Cycle and Yearly Dependency

We now use observational monthly averages to demonstrate
the dependency on solar cycle in the aTEC latitudinal variation
at noon and midnight, respectively. These averages are
calculated for the entire month (i.e., including disturbed days)
and are used for comparisons with those during quiet days.

As depicted in Fig. 11 (noon) and 12 (midnight), (1) the
intensity of irregularities represented by aTEC during high
solar activity is higher at noon than at midnight; during low
solar activity, however, aTEC is weaker at noon (< 0.3 TECu)
than at midnight (> 0.4 TECu); (2) at noon, the low- latitude
boundary of the intensity enhancement is influenced
significantly by solar activity, reaching a low latitude limit
of 60°N (geographic) in Jan 2015, a low latitude limit of
70°N (geographic) in Jan 2020, and then back to 60°N again
around Jan 2024; (3) during quiet days, this noontime low-
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Fig. 9. Northern (left panel) and southern (right panel) hemispheric com-
parisons at given local times 00 LT and 12 LT for 2018 and 2024.

latitude limit varies with solar activity, following the same
trend as described in (2), but the intensity of irregularities
is significantly weaker for these quiet days as indicated
in Section 3.4; (4) at midnight, the band of intensity
enhancement within the auroral oval varies depending on
the solar cycle. During high solar activity, the band is wider
with its lower latitude limit extending equatorward, and
during low solar activity, the band is narrower with its lower
latitude limit retreating poleward; (5) during quiet days, this
midnight band is much narrower with reduced intensity of
irregularities (from > 0.4 TECu to < 0.4 TECu on average)
within it; (6) the high-latitude limit of enhanced irregularity
intensity is extended into the entire polar cap on both
dayside and nightside during high solar activity, whereas
during low solar activity, the irregularity oval has a much
narrow latitudinal span.

The feature (6) mentioned above indicated that the
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intensity of mesoscale irregularities has significantly
increased throughout the polar cap. As discussed in the
subsequent Section, this feature is likely associated with
electron density structures, such as transpolar TIDs, tongue
of ionization (TOI), and polar cap patches with varying
spatial sizes. These are formed during IMF Bz fluctuations
and other conditions.

Full northern polar views are also shown in Fig. 13 (noon)
and in Fig. 14 (midnight) throughout the period of 2010~
2024 as yearly averages during quiet days. The solar cycle
dependence of intensity of irregularities and the width of
the auroral oval, which are all organized along apex latitude,
is significant. Figs. 15 and 16 shows these polar maps at 06
UT and 12 UT. These UT maps show not only the intensity
enhancement (auroral) locations at noon and midnight but
also other local times, demonstrating the curvature changes
into elliptical oval between midnight and noon.

4. DISCUSSION AND SUMMARY

This study examines ionospheric mesoscale irregularities
at high latitudes, specifically those caused by energetic
particle impacts on the ionospheric electron density and
magnetosphere-ionosphere-thermosphere coupling
processes within the auroral oval. The intensity of mesoscale
irregularities is determined by using GNSS TEC observations
with the TEC fluctuation component being extracted and
evaluated within 1° longitude x 1° latitude x 5 min time
bins. Global GNSS TEC measurements over a 15-yr period,
spanning from 2010 to 2024, provide very extensive data
for this analysis, resulting in a comprehensive and reliable
meso-scale irregularity climatology at high latitudes.

The spatial distribution and variability of the intensity
of irregularities are essentially overlapped with the auroral
oval, thus the “irregularity oval” can serve as a reasonable
proxy to represent the auroral oval dynamics, influenced by
various factors such as local time/longitude, latitude, season,
hemisphere, magnetic disturbance, and the solar cycle.
Specifically, (a) the “irregularity oval” has its low latitude
limit at midnight being low than at noon, and expanded
equatorward during enhanced geomagnetic activity and
solar activity; (b) The intensity of the irregularities appears
strong on dayside than on nightside during high solar
activity, and strong on nightside than on dayside during low
solar activity; (c) the nightside intensity is strong in equinox
than in solstices, and in summer than in winter; however,
the dayside intensity is high in winter and weak in summer;
and (d) during low solar activity, the intensity enhancement
occurs only within the “irregularity oval” on both dayside
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and nightside, whereas during high solar activity, the entire
polar cap throughout dayside and nightside experiences the
enhanced intensity of irregularities.

The observed mesoscale irregularities represent
ionospheric density structuring inside the auroral oval.
While identifying the exact causes of the variability and
climatology of these irregularities needs information beyond
the intensity measurements, as shown here, some essential
processes may be speculated. (1) Particle precipitation
induced impact ionization that can influence both the E and
F regions. Those associated with diffusion aurora and soft
particle precipitation may lead to the F-region mesoscale
irregularity. With enhanced substorm activities, the auroral
zone is moved equatorward, and the auroral E may be
responsible for the elevated intensity of irregularities. (2)
TIDs inside the aurora and adjacent areas may be excited.
LSTIDS are often observed following the Joule heating
enhancement, which excites GWs in the neutral atmosphere
that propagate away from the heating region into lower and

0.5

2018 2019
2010-01 - 2025-01

2020 2021 2022 2023 2024

UT (00 LT) derived every day in a month (upper panel) and during the international

higher latitudes. Some LSTIDs that propagate meridionally
may constitute those mesoscale irregularities. MSTIDs
has been reported to occur at subauroral latitudes arising
from ionospheric instabilities due to enhanced storm-time
electric field (Zhang et al. 2022; Sato et al. 2024). It is not
clear how frequently these TIDs occur and what form they
may take inside the auroral region. Additionally, transpolar
TIDs have often been observed to travel from the dayside
to nightside through the polar cap (Zhang et al. 2019b;
Nishimura et al. 2020). (3) Other plasma density gradient
structures, including patches and Tongue of Ionization,
are also possible sources of observed density irregularities.
These structures may not be precisely mesoscale any more
but contribute to the observed irregularities. These can be
intensified during solar wind and geomagnetic disturbances
and can be observed inside the auroral oval as well as in the
polar cap.

While the primary objective of this study has been to
systematically document the climatology of ionospheric
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Fig. 13. Northern polar maps at 00 LT as yearly averages for 15 yr from 2010-2024 during those international 10 most quiet days each month.
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mesoscale irregularities, future in-depth analyses are
required to quantitatively establish the relationship between
the GNSS-measured “irregularity oval” and the auroral
oval determined by energetic particle measurements. A
subsequent step involves developing a novel GNSS TEC-
based “irregularity oval” model that can account for
seasonal, magnetic local time, apex latitude, and longitude
variations, as well as the dependency on geomagnetic
disturbance and solar activity.
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