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Classification of Gravitational Waves from Black Hole-Neutron Star 
Mergers with Machine Learning
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This study developed a machine learning-based methodology to classify gravitational wave (GW) signals from black hole-
neutron star (BH-NS) mergers by combining convolutional neural network (CNN) with conditional information for feature 
extraction. The model was trained and validated on a dataset of simulated GW signals injected to Gaussian noise to mimic real 
world signals. We considered all three types of merger: binary black hole (BBH), binary neutron star (BNS) and neutron star-
black hole (NSBH). We achieved up to 96% correct classification of GW signals sources. Incorporating our novel conditional 
information approach improved classification accuracy by 10% compared to standard time series training. Additionally, to 
show the effectiveness of our method, we tested the model with real GW data from the Gravitational Wave Transient Catalog 
(GWTC-3) and successfully classified ~90% of signals. These results are an important step towards low-latency real-time GW 
detection.
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1. INTRODUCTION 

Since the groundbreaking detection of gravitational 

waves (GWs) in September 2015 (Abbott et al. 2016) by 

the advanced Laser Interferometer Gravitational-Wave 

Observatory (LIGO) and the Virgo Collaboration (Abbott 

et al. 2009; Aasi et al. 2015; Acernese et al. 2015), the field 

of GW Astrophysics has entered a new epoch. In the initial 

observing runs, O1 and O2, a total of eleven GW signals from 

compact binary mergers were identified, encompassing ten 

binary black-hole (BBH) events and a singular, distinct binary 

neutron star (BNS) merger, GW170817 (Abbott et al. 2017b, 

2019a, 2019b). The significance of GW170817 extended 

across scientific disciplines, marking the beginning of Multi-

Messenger Astrophysics (MMA) by linking gravitational 

wave observations with electromagnetic (EM) radiation 

(Abbott et al. 2017c). This convergence unveiled a new 

horizon for understanding astrophysical processes using 

GWs, EM radiation, cosmic rays, and neutrinos, offering 

a comprehensive view of celestial sources (Vartanyan & 

Burrows, 2020; Yuan et al. 2020). As the third observing run 

(O3), which was divided into O3a and O3b, the number of 

gravitational wave events increased significantly, exceeding 

70 new detections. Notably, this phase not only included an 

additional BNS merger (Abbott et al. 2020) but also witnessed, 

for the first time, the detection of two neutron star-black hole 

(NSBH) mergers (Abbott et al. 2021). The cumulative events, 

including those from O3, form the third Gravitational-Wave 

Transient Catalog (GWTC-3), incorporating over 90 distinct 

occurrences of compact object mergers (Abbott et al. 2023a, 

2023b).

The start of the O4 observing run in May 2023 heralds an 

ambitious 20-month phase for LIGO, Virgo, and KAGRA 

collaborations. O4a, the initial period, concludes on January 

16, 2024, marked by endeavors to address variable noise 

coupling. Following an 8-week break and an engineering 
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run (ER16) in March 2024, O4b commences on March 

27, 2024, marking a key phase for gravitational wave 

observations. LIGO’s Hanford and Livingston detectors 

sustain robust operation, exhibiting a BNS detection range 

of 140 to 170 Mpc. Meanwhile, Virgo is expected to achieve a 

BNS range over 45 Mpc due to recent commissioning efforts 

aimed at noise reduction and stability improvements. Plans 

for the subsequent O5 remain under revision by Virgo, with 

details expected to solidify by mid-2024. KAGRA’s reinitiated 

commissioning, scheduled to rejoin observations in spring 

2024, anticipates a BNS range of around 10 Mpc (Abbott et 

al. 2017a; 2018; Cahillane & Mansell 2022).

However, the increasing detection rates of GW pose a 

computational challenge for current matched-filtering 

techniques (Antelis & Moreno 2019). These traditional 

methods, relying on pre-calculated waveform templates, 

become computationally intensive and need help with 

the expansive parameter space of unknown source 

characteristics (Canton et al. 2014). Moreover, their 

dependence on precise templates raises concerns about 

potential missed signals that deviate from expected 

theoretical patterns (Gabbard et al. 2018; Kang et al. 2022). 

Additionally, accounting for unique events with factors such 

as eccentricity, precession, and higher-order models makes 

it impractical to cover this range with millions of templates, 

especially in neutron star scenarios where prompt 

electromagnetic follow-ups are crucial (Kang et al. 2022).

Consequently, the pressing demand for more efficient 

detection and classification algorithms in astronomy, 

overcoming the limitations of conventional methods, has 

led to the emergence of Deep Learning (DL) methodologies. 

Recently, Qiu et al. (2023) demonstrated the success of DL in 

identifying coalescence GW events involving neutron stars, 

encompassing two BNS mergers and two NSBH mergers 

(Qiu et al. 2023). These advances in DL, along with the 

increasing prevalence of machine learning techniques are 

playing crucial roles in tasks such as exploring supernova 

GWs (Mitra et al. 2023), optimizing efficiency and accuracy in 

estimating the detectability of extreme-mass-ratio inspirals 

signals (Chapman-Bird et al. 2023; Yun et al. 2023), and 

gravitational wave data analysis (Gabbard et al. 2018; George 

& Huerta. 2018; Dreissigacker et al. 2019; Ormiston et al. 

2020; Wang et al. 2020; Zhanabaev & Ussipov 2023), reflecting 

their growing significance in advancing astronomical 

research. The utilization of Convolutional Neural Network 

(CNN) algorithms has demonstrated remarkable potential 

in detecting simulated signals from BBH collisions amidst 

Gaussian noise, rivaling or surpassing the performance of 

conventional matched-filtering techniques (Qiu et al. 2023). 

This marked a turning point, prompting numerous research 

cohorts to embrace DL algorithms for detecting GW BBH 

events in simulated and real LIGO data. 

Considering the computational challenges faced by 

current matched-filtering techniques in GW detection, as 

mentioned earlier, our research introduces conditional 

information as a novel feature for signal characterization. 

Entropy, a ubiquitous tool in signal processing, offers a 

unique perspective for characterizing signal attributes, 

effectively addressing the limitations inherent in traditional 

methods. Its application is widespread across various 

disciplines, such as radar signal processing for source 

attribution and signal classification (Nalband et al. 2018; 

Zhang et al. 2023), and in the medical field for disease 

diagnosis through electroencephalograms (EEGs) or 

electrocardiograms (ECGs) analysis (Chawale et al. 2022). 

By incorporating entropy analysis into our GW detection 

and classification methodology, we aim to enhance the 

versatility and effectiveness of GW detection algorithms. 

This approach represents a significant departure from the 

prevailing deep learning methods. It could potentially 

offer a more efficient solution to the challenges of large 

parameter spaces and the need for prompt identification in 

scenarios involving neutron stars.

Considering the computational challenges faced by current 

matched-filtering techniques in GW detection, this research 

introduces conditional information as a novel feature for 

signal characterization. Conditional information estimation 

involves analyzing two discrete time series: the received 

GW signal and signal interference. By leveraging mutual 

information, which quantifies the nonlinear relationship 

between these signals, the methodology addresses limitations 

inherent in traditional methods. This approach represents a 

significant shift from conventional deep learning methods, 

offering a potentially more efficient solution to the challenges 

of large parameter spaces and prompt identification, 

especially in scenarios involving neutron stars.

The rest of the paper is structured as follows. In section 2, 

we describe our methods to construct a dataset, calculate 

conditional information, and train CNNs. In section 3, 

we present and discuss the results. In section 4, we make 

conclusions.

2. DATA AND METHODS

2.1 Data Preparation

For the simulation of GW signals for Compact Binary 

Coalescences (CBC), we utilized the LIGO Algorithm 

Library Suite (LALSuite; LIGO Scientific Collaboration 
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2018). This suite provided us with the tools to generate 

waveforms for BBH, BNS, and NSBH systems. The specific 

time-domain waveform approximants used were SEOBNRv4 

for BBH (Bohé et al. 2017), which models the inspiral, 

merger, and ringdown components of the signal, TaylorF2 

for BNS (Messina et al. 2019) and IMRPhenomNSBH for 

NSBH (Matas et al. 2020). Our approach is adapted by the 

widely used methodology of Gebhard et al. (2019), which 

we integrated for our own needs. The generated signals are 

illustrated in Fig. 1.

In creating BBH waveforms, we uniformly sampled 

component masses between 2 and 95 M☉ with a maximum 

mass ratio (m 1/m 2) of  10.  For BNS waveforms, the 

component masses were uniformly sampled between 1 

and 2 M☉. For NSBH waveforms, neutron star component 

masses were uniformly chosen between 1 and 2 M☉, while 

black hole masses were sampled between 2 and 35 M☉. We 

randomly sampled values for the z-components of their 

spins, right ascension, declination, polarization, inclination, 

and coalescence phase angle. These parameters collectively 

specify the location and orientation of the source in the sky, 

as well as the injection signal-to-noise ratio (SNR).

Waveforms are sampled at a frequency of 4,096 Hz over 

4 seconds. This duration was chosen by the authors (Qiu 

et al. 2023) as it has proven effective in achieving robust 

discrimination between different classes of CBC. Moreover, 

this timeframe is sufficient for accurately recovering real 

GW signals corresponding to all CBC configurations. Opting 

for these shorter templates significantly reduces memory 

requirements during our neural network training, a crucial 

factor in managing computational resources effectively.

To simulate realistic GW signals, we inject GW signals 

into Gaussian noise using the PyCBC library, which utilizes 

the power spectral density (PSD) model specific to the 

advanced LIGO detectors (Usman et al. 2016; Biwer et al. 

2019). Gaussian noise is generated to match the expected 

background noise characteristics for the detector. The GW 

signals are then projected on the detectors and resized 

before being injected into the Gaussian noise with a specific 

SNR. Real data from the detectors as well as simulated 

signals undergo a whitening process to enhance the signal 

visibility against background noise. Whitening is performed 

using PSD computed directly from the raw gravitational 

wave strain data via Welch’s method (Welch 1967). This 

critical step ensures that the noise contribution at each 

frequency is rescaled to have equal power, thereby making 

the signal more distinct. Whitening is a linear operation; 

thus, applying it separately to both real data and simulated 

signals is effectively equivalent to whitening the combined 

data, as noted by Gabbard et al. (2018).

To further refine our training process and make it 

robust against moderate time translations in the signal, we 

randomly position the peak of each waveform within the 

template, specifically between 3.7 and 3.9 seconds. This 

Fig. 1. Sample of simulated gravitational waves (GWs) projected onto the Hanford (H), Livingston (L), Virgo (V) detectors.
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randomness in peak positioning enhances the model’s 

ability to handle moderate time translations in the signal 

during training (Qiu et al. 2023). Additionally, we adjust the 

amplitude of each injected waveform to achieve a specific 

SNR. The SNR is defined as follows (Gabbard et al. 2018):

	 ( )
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where h˜ is the frequency domain representation of the GW 

strain, Sn(f) is the single-sided detector noise PSD, and  fmin 

is the frequency of the GW signal at the start of the sample 

time series. From an astrophysical perspective, rescaling the 

waveform is equivalent to varying the source distance from 

the detector.

We generate 480,000 templates for training, 16,000 

templates for validation, and 1,600,000 templates for testing, 

all disjointing. SNR was uniformly sampled in the range 

between 0 and 20.

2.2 Conditional Information Estimation

Our method considers two discrete time series of signals, 

X represents the received GW signal and Y represents the 

signal interference, denoted as Δx[n], where [n] = Δx[n]. 

The signal interference, Δx[n], defined as the interval of 

deviation from Δx[n], determined by the central (symmetric) 

difference: Δx[n] = (x[n + 1] + x[n – 1]) / 2 – x[n]. Moreover, 

Mutual information tells us how much information we 

can get from one random variable by observing another 

random variable. Mutual information is closely related to 

the concept of entropy. Because in some cases, when one of 

the variables is known, mutual information can reduce the 

uncertainty of the other random variable to a certain extent. 

Mutual Information Quantifies the nonlinear relationship 

between the signals X and Y, denoted as I(Y;X), and 

computed as the difference between one-dimensional and 

conditional Shannon entropies (Shannon & Weaver 1949): 

	 I(Y;X) = H(Y) – H(Y | X)	 (2)

where H(Y) and H(Y | X) defined as:
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Conditional information is computed as the difference 

between joint entropy and conditional entropy, defined as:

	 I(Y | X) = H(X,Y) − H(Y | X)	 (5)

where H(X,Y) defined as:

	 ( ) ( ) ( )2
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A detailed explanation of conditional information as a 

tool for utilizing gravitational wave signals is provided in the 

paper by Zhanabaev & Ussipov (2023).

2.3 Convolutional Neural Network

Fig. 2 shows CNN processing the input time series, where 

convolutional filters slide over the data to extract local 

Fig. 2. Using Conditional entropy as a feature to classify gravitational wave (GW) signals. The red arrow illustrates the movement of 
the convolutional filters as they traverse the input time-series vector. The final layer outputs the probability that the input time series is 
classified into one of the categories: binary black-hole (BBH), binary neutron star (BNS), neutron star-black hole (NSBH) or Noise. 
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patterns and temporal dependencies. This method helps 

the network learn key data characteristics. Pooling layers 

reduce dimensionality, and the final softmax layer outputs 

probabilities for categories like BBH, BNS, NSBH, or Noise, 

ensuring accurate classification.

Our CNN architecture comprises 7 convolutional blocks 

followed by 2 Dense layers, concluding with a softmax 

activation function at the output. Each convolutional block 

features a 1D convolution layer with a ReLU activation 

function and a 1D Max Pooling layer. The parameters for 

the Conv1D and MaxPooling1D layers are set as follows: 

kernel size of 3 for Conv1D, pool size of 2 for MaxPooling, 

and same-padding for both layers. The convolutional layers 

are configured with 128, 64, 32, 32, 32, 32, and 32 filters, 

respectively, while the Dense layers consist of 64 neurons 

in the hidden layer and 4 neurons in the output layer. The 

model has a total of 175,140 parameters. The CNN model 

was implemented and trained using TensorFlow 2.1, with 

the Adam optimizer, a learning rate of 0.001, and a batch 

size of 256. We utilized categorical cross-entropy as the loss 

function and incorporated EarlyStopping regularization, 

monitoring validation accuracy with a patience of 10 

epochs. The training was performed on an NVIDIA 

GeForce RTX 3080 GPU with 10 GB of video memory. The 

architecture is illustrated in Fig. 3.

3. RESULTS AND DISCUSSION

We evaluate the performance of our model using a testing 

dataset consisting of GW events described in subsection 2.1. 

This evaluation includes assessing the effectiveness of our 

approach within the impact of SNR, accuracy of CNN within 

training progress and comparing the trained DL model’s 

performance before and after with utilizing our approach. 

Finally, the model’s performance is tested on real GW events 

from the GWTC-3 catalog.

Fig. 4(a) depicts the conditional information and entropy 

calculations for three types of gravitational wave signals: 

BBH, BNS, and NSBH. These values are calculated using 

Eqs. (4) and (5), with the peak interval of the time series data 

used for the calculations. We then applied the Monte Carlo 

method to average the conditional information and entropy 

across all simulated data. The results show distinct levels of 

conditional information and entropy for each signal type, 

indicating its potential as a feature for classification. 

The three curves show that as the SNR increases, the 

probability of detecting BBH and NSBH increases rapidly 

and then levels off, indicating that higher SNR values do 

not significantly increase the detection probability. For 

BNS events, the probability increases more gradually and 

continues to increase as SNR grows.

At lower SNR values, BNS events have a higher detection 

probability than BBH and NSBH, but as the SNR increases, 

the probability for BBH and NSBH surpasses that of BNS. 

This could imply that BBH and NSBH events produce 

stronger signals at higher SNRs, making them easier to 

detect compared to BNS events.

Fig. 4(b) shows the variation of conditional information 

and entropy with different window sizes, using an SNR of 

30. The figure demonstrates that the feature remains stable 

Fig. 3. A schematic diagram of neural network architecture illustrates that 
all 1D convolution layers within a given convolutional block have various 
numbers of filters. The total number of parameters in the model is 175,140.
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within a particular window size.

The performance of our CNN model was evaluated based 

on its ability to correctly classify simulated GW signals into 

their respective categories: BBH, BNS, and NSBH. Fig. 5 

shows training progress of a CNN over a certain number of 

epochs, which are iterations over the entire data set. Both 

the accuracy and validation accuracy are converging to a 

high percentage, and the validation loss is decreasing, which 

indicates that the model is learning effectively without 

overfitting, as there is not a significant gap between training 

and validation accuracy.

Two confusion matrices are included to illustrate the 

impact of incorporating conditional information into CNN 

training. Fig. 6 shows the confusion matrix before integrating 

conditional information, while Fig. 7 presents the results 

after its inclusion. The comparison reveals significant 

gains in classification accuracy and model performance, 

showing that conditional information effectively refines the 

network’s ability to differentiate between gravitational wave 

signal types. After integrating conditional information, the 

model shows the following performance metrics:

•	 �BBH (Binary Black Hole): The model has a high accuracy 

rate of 96% for correctly predicting BBH events, with 

very few misclassifications.

•	 �BNS (Binar y Neutron Star):  The model is  also 

performing well on BNS predictions with 95% accuracy.

•	 �NSBH (Neutron Star-Black Hole): The accuracy drops 

slightly for NSBH events, with the model correctly 

identifying them 90% of the time. There is a notable 

Fig. 4. Impact of varying signal-to-noise ratio (SNR) and window size. (a) Conditional information (dashed) and conditional entropy (solid) of different signals with 
increasing SNR. (b) Conditional information (dashed) and conditional entropy (solid) of different signals with different window sizes.

                  (a)                                                                                                                                                                    (b)

Fig. 5. Training process of Convolutional Neural Network (CNN) model. Fig. 6. The confusion matrix for standard time series training.
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misclassification rate with BBH signals (5% of NSBH 

events are classified as BNS).

•	 �Noise: This category is likely used for classifying signals 

that are not GWs. The model has a high accuracy of 

95% for correctly identifying noise.

An analysis of real gravitational wave events from GWTC-

3 is included to assess the effectiveness of the methodology. 

Table 1 presents the classification results for these events, 

detailing the gravitational wave signals identified by the 

model. The table includes the event name, masses, detected 

SNR, and the type of CBC. 

4. CONCLUSION

Our research has successfully demonstrated the viability 

of employing machine learning techniques, particularly 

CNNs and conditional information estimation, for the 

classification of gravitational wave signals from BH-NS 

mergers. 

We introduced an innovative methodology that combines 

conditional information as a feature in signal processing 

with the power of deep learning for gravitational wave 

detection. This approach not only addresses the limitations 

of traditional matched-filtering techniques but also 

enhances the detection and classification accuracy of GW 

signals.

We constructed a comprehensive dataset of simulated 

gravitational wave signals using the LALSuite. This dataset, 

including waveforms for BBH, BNS, and NSBH systems, was 

pivotal in training and validating our CNN model, ensuring 

its robustness and accuracy in real-world scenarios.

The CNN model exhibited exceptional performance, 

achieving high accuracy rates in classifying simulated GW 

signals into their respective categories. This level of accuracy 

is particularly significant considering the complexities 

involved in distinguishing between different types of 

gravitational wave signals.

Our methodology’s applicability to real gravitational 

wave data was validated by testing the model on real GW 

data from the GWTC-3 catalog, where it achieved notable 

accuracy. This underscores the potential of our approach 

in contributing to ongoing and future gravitational wave 

observational campaigns.

The promising results of our study pave the way for further 

research and development in the field. With the anticipated 

improvements in gravitational wave detectors and the 

continuous evolution of machine learning algorithms, the 

scope for more refined and advanced detection methods is 

vast. Our research contributes a foundational step towards 

this progress.

Fig. 7. The confusion matrix utilized conditional entropy as a feature for 
training.

Table 1. Classification results for Gravitational-Wave Transient Catalog (GWTC-3) events

Event name M1 M2 SNR CBC type Classified 

GW150914 35.6 30.6 26.0 BBH BBH (100%)

GW151012 23.2 13.6 10.0 BBH BBH (92%)

GW151226 13.7 7.7 13.1 BBH BBH (100%)

GW170104 30.8 20.0 13.8 BBH BBH (100%)

GW170608 11.0 7.6 15.4 BBH BBH (100%)

GW170817 1.46 1.27 33.0 BNS BNS (100%)

GW190425 1.74 1.56 10.1 BNS BNS (84%)

GW191219 31.1 1.17 9.1 NSBH NSBH (76%)

GW200105 8.9 1.9 13.9 NSBH NSBH (94%)

GW200115 5.7 1.5 11.6 NSBH NSBH (70%)

GW200322_091133 38.0 11.3 4.5 BBH Noise

GW200308_173609 60.0 24.0 4.7 BBH Noise

SNR, signal-to-noise ratio; CBC, compact binary coalescences; GW, gravitational wave; BBH, binary black-hole; BNS, binary 
neutron star; NSBH, neutron star-black hole. 
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