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Studying the accretion phenomena provides a window into understanding most heavenly bodies, from the birth of stars to 
active galactic nuclei (AGN). We would adopt the effect of the radiation pressure, which reduces accretion rates ( M ), on the 
accretion phenomena. The Shakura-Sunyaev α-disk model of disk accretion is a good candidate theory of advection dominated 
accretion flow (ADAF). Reduction in the angular velocity leads to the suppression the disk luminosity and surface temperature, 
essentially indicating the transition of the standard accretion disk model from convection dominated accretion flow (CDAF) to 
ADAF.

Keywords: advection dominated accretion flow (ADAF), convection dominated accretion flow (CDAF), accretion disk, active ga-
lactic nuclei (AGN)

1. INTRODUCTION 

The accretion phenomena in astrophysics, namely, 

the gravitational capture of ambient matter by compact 

objects [black hole (BH), neutron star (NS), white dwarf 

(WD), etc.] on a stellar scale or the accretion flow into super 

massive BHs on a galactic scale are of great interest to both 

the theoretical astrophysics and observational astronomy 

communities. Notably, when falling through the steep 

gravitational potential of a BH or a NS, roughly 10% of the 

accreted rest-mass energy is converted into radiation. In 

particular, accretion phenomena involve both the gas fluid 

inflow and radiation outflow at nearly equal magnitudes. 

Until now, however, the standard α-disk accretion model 

of Shakura-Sunyaev (Shakura & Sunyaev 1973) or Novikov-

Thorne (Novikov & Thorne 1973) does not involve the 

effect of radiation on the disk accretion phenomena in a 

systematic manner; thus, the α-disk accretion model has 

been proposed, namely,  convection dominated accretion 

flow (CDAF), as the cooling of accreting gas is efficient. 

Employing the usual hydrodynamics results in the familiar 

physical observable heavenly bodies which associated with 

this CDAF model for disk accretion onto various types of 

systems, such as:

•	 Young stellar objects (YSOs)

•	 Cataclysmic variables (CVs)

•	 X-ray binaries (XBs)

•	 Active galactic nuclei (AGN)

The CDAF model provides the total radiation flux,

	 ( )
/

* ,
1 2

3

3 1
4
GMM rD rc r r

β
π

  = −  
   



	 (1)

disk luminosity,

	 ( )
1 1

34 dr
2c cr

GMML D rr r
π β

∞  = = − 
 ∫



	 (2)

and the surface temperature

This is an Open Access article distributed under the terms of the 
Creative Commons Attribution Non-Commercial License (https:// 
creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted 
non-commercial use, distribution, and reproduction in any medium, 
provided the original work is properly cited.

Received 30 OCT 2023   Revised 13 NOV 2023   Accepted 13 NOV 2023 
†Corresponding Author

Tel: +82-42-821-5468, E-mail: temiy@cnu.ac.kr

ORCID: https://orcid.org/0000-0001-7859-8581



248https://doi.org/10.5140/JASS.2023.40.4.247

J. Astron. Space Sci. 40(4), 247-258 (2023)

	 ( )
//

,
1 41 2

1
3

3 1
2s
GMM rT r

br r
β

π

  = −  
   



	 (3)

where M  denotes the accretion rate and |β| ≤ 1, and r1 

denotes the inner edge of the disk and ( ) ( )4
s

12Dc r bT r
2

= . 

However, recent observations of some of these systems have 

revealed puzzling anomaly, namely, considerably lower 

luminosity and surface temperature than those of standard 

disks associated with the aforementioned CDAF model. To 

interpret or understand this unexpected anomalous feature 

of accretion disks, new underlying models have been 

suggested for accretion flow. Among them, the most notable 

is the advection dominated accretion flow (ADAF) (Narayan 

& Yi 1994, 1995a, b; Abramowicz et al. 1995; Abramowicz et 

al. 1996; Narayan et al. 1996; 1997a, 1997b; Abramowicz et 

al. 1997; Manmoto et al. 1997; Gammie & Popham 1998; 

Manmoto 2000), which is briefly summarized as follows. 

Considerably lower luminosity and surface temperature of 

some disks can be attributed to the inefficient cooling of the 

disk, which in turn could be attributed to the transfer of the 

bulk of the liberated thermal energy by the accreting gas as 

entropy increase rather than as outgoing radiation. 

Consequently, the flow becomes even quasi-spherical. 

However, thus far, this model lacks its own first principle or 

supporting arguments, despite the active follow-up 

publications. Therefore, in our study, we propose the first 

principle underlying the ADAF model. We state that by the 

systematic inclusion of the radiation pressure on the 

accretion flow, all the anomalous features of the ADAF can 

be reproduced.

2. MODIFICATION OF THE “SHAKURA-SUNYAEV 
α-DISK MODEL” THROUGH THE INCLUSION OF 
THE RADIATION PRESSURE IN THE ABSENCE OF 
THE RADIATION FORCE
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where G is Newton’s gravitational constant; mp is the mass 

of the test particle near the central star or BH; M is the mass 

of the central star or BH; r is the radial distance of mp and 

M;  acis the radial acceleration; and Ωc is the angular speed 

of the test particle in the absence of radiation pressure. 

Conversely, in the presence of the radiation force,
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where I is the intensity of the central star or BH; c is the 

speed of light; σT is the Thompson scattering cross section; 

L is the luminosity of the central star or BH; and ΩA is 

the angular velocity of the test particle in the presence of 

radiation force. In particular, the effect of the radiation 

pressure on accretion flow is the reduction in the angular 

velocity of accreting matter and eventual suppression 

of the total radiation flux, disk luminosity, and surface 

temperature. In particular, in the absence of the radiation 

force,
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representing the total radiation flux and disk Luminosity, 

respectively.
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where Dc(r) is the total radiation flux ; L c is the disk 

luminosity; Ts(r) is the surface temperature in the absence 

of the radiation force; r* is the inner radius of the disk; and ω 

is the surface mass density of the disk in the absence of the 

radiation force.

In the presence of the radiation force,
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where L denotes the luminosity of the central object and all 

parameters with the subscript A denote the corresponding 

quantities in the presence of the radiation. In particular, 

all of them get suppressed by the reduction in the angular 

velocity Ω(r) of accreting matter; through renormalization,
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Notably, as the rotation angular velocity ΩA(r), total 

radiation flux DA(r), and disk luminosity LA should be 

positive and the surface temperature should be real, the 

luminosity of the central star should be lower than the 

Eddington luminosity,
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In the present approach for modifying the standard 

accretion disk model proposed by Shakura & Sunyaev (1973) 

and at the Eddington luminosity LEdd, the disk-type accretion 

process terminates, and the accretion flow transitions from 

the disk accretion model of Shakura & Sunyaevy (1973) 

to the spherical, adiabatic, and hydrodynamic accretion 

proposed by Bondi (1952). In particular, considering 

the interpretation of the present description as the new 

candidate theory of the ADAF model, as the luminosity 

of the central star approaches the Eddington's critical 

value LEdd, the nature or characteristic of ADAF becomes 

more “extremal” as both the disk luminosity and surface 

temperature drop to zero, LA, TA(r) → 0.

In particular, in contrast to the existing conventional 

ADAF model, our method for the new candidate theory of 

the ADAF model sensitively responds to the luminosity of 

the central star. Therefore, this last point can be employed 

as an “observational probe” to distinguish between our 

newly proposed candidate theory of ADAF and existing 

conventional ADAF models, such as that of Narayan & Yi. 

For example, in existing conventional ADAF models, the 

inner part of the accretion flow is maintained all the way, 

provided the central star has low, sub-Eddington luminosity. 

The essence of our study and its claim is that the present 

modification of the Shakura-Sunyaev α-disk model of disk 

accretion can be regarded as a new candidate theory of 

ADAF: reduction in the angular velocity of accreting matter 

suppresses the disk luminosity and surface temperature, 

essentially indicating the transition of the standard 

accretion disk model from CDAF to ADAF.

3. DETAILED COMPUTATIONS IN TERMS OF 
HYDRODYNAMICS

3.1 Equations of the Radial Structure

In general, accretion is the process by which compact 

objects (BH, NS, and WD) or massive stars gravitationally 

capture ambient matter. Here, we are particularly interested 

in the disk-type accretion of gas onto compact stars of mass 

M \ simM


 in BH XBs and onto super massive BHs with 
6 9M 10 10 M∼



  in (AGN), which are the most likely 

sources of energy radiation in the observed rapidly varying 

emission at high luminosity. Notably, the accretion process 

onto compact or massive stars is worthy of investigation 

because when falling through the steep gravitational 

potential abyss, roughly 10% of the rest-mass energy of 

accreting matter may be converted into the radiation. In 

particular, accretion is a process that is considerably more 

efficient as a cosmic energy source than any other 

mechanisms in astrophysics, such as nuclear fusion. In 

practice, we consider the “steady (vanishing partial time 

derivative)” accretion of ambient fluid into central stars. We 

also assume that the fluid would be adiabatic in the first 

approximation, treating the entropy loss owing to radiation 

as a small perturbation. Subsequently,  the fluid is 

characterized by an equation of state with the adiabatic 

index Γ; p = κρΓ, and thus, the speed of sound is expressed 

as
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According to our findings, in the absence of the radiation 

force, the accretion disk is clearly represented by the 

Keplerian disk, wherein the angular velocity (of the fluid 

element) is expressed as
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Meanwhile, in the presence of the radiation force, the 

accretion disk is still represented by the quasi-Keplerian 

disk, wherein the angular velocity is expressed as
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whereas its angular momentum is expressed as
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namely, in both cases, the disk comprises shear flows, with 

velocity gradients as follows

	 ( ) ( ),r r drΩ > Ω + 	 (22)
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Therefore, accretion through successive Keplerian orbits 

in front of the central compact or massive star is only 

possible if the gas (i.e., the fluid element) constantly loses 

angular momentum (and is transported outward) owing to 

some viscous torque.

3.1.1 Viscous Stress and Torque

Therefore, to eventually express this viscous torque, we 

consider the viscous force (viscous stress, which would 

directly be proportional to the shear force or shear stress).

	 2r rt φ φησ= − 	 (24)

where trϕ and σrϕ denote the viscous stress and shear stress, 

respectively, and η(g/cm ···) denotes the coefficient of 

dynamic viscosity. As the shear stress originates from the 

angular velocity gradient, it is expressed as
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and hence,
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Namely, viscous stress trϕ represents the viscous torque 

per unit area (around the circumference of the disk 

layer) exerted in the ϕ-direction by fluid elements at r on 

neighboring elements at r+dr. Finally, the expression for the 

viscous torque is as follows

	 ( ) ( )viscous torque viscous tress area r= × × 	 (27)

namely, 
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and thus,

	 ( )
/

,
1 2

24 1
4

T
I r I I

p

r ht M GMr Lr
m cφ
σπ β
π

 
= − −  

 
 	 (30)

at the inner edge of the disk, r = rI

3.1.1.1 Note 1

Notably, in the standard Shakura-Sunyaev model, (β = 1) 

represents the “zero-torque” inner boundary condition.

3.1.1.2 Note 2

The practical expression for the viscous stress is as follows
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Eq. (30) suggests that under a steady-state, the viscous 

stress trϕ is only determined by the accretion rate M , mass 

M, and luminosity L of the central compact or massive star.

3.1.1.3 Note 3

Furthermore, the derivation for the expression of the 

aforementioned viscous torque based on the “angular 

momentum conser vation” is  descr ibed below.  As 

mentioned previously for the case where the effect of 

radiation pressure on the accretion process is included, the 

inward rate of angular momentum transport across radius r 
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in the disk owing to the inflowing fluid is expressed as
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Subsequently, if using J −
 , namely, the rate at which the 

angular momentum is deposited into (last down to) the 

central compact or massive star through the inner edge of 

the disk, r = rI is expressed as
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for some 1β ≤ , as the specific angular momentum deposited 

into the central star cannot exceed the value L  at the inner 

edge of the disk. Lastly, the mass accretion rate M  based on 

the “rest mass conservation law” is expressed as follows (i.e., 

the continuity equation):
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yields Eq. (36);
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h

0h
dz ρ

−
∑ = ∫  is the surface mass density.

3.1.2 Total Radiation Flux (or Surface Emissivity) and Disk 
Luminosity

Subsequently, we consider “energy conservation” within 

the context of standard hydrodynamics. In particular, the 

heat (or entropy) generated in the accretion disk by viscosity 

is expressed as (per unit area)
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Therefore, the heat generated by viscosity per unit time is 

expressed as
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Finally, as the accretion disk possesses two emission 

surfaces, namely, the top and bottom surfaces, the total 

radiation flux (or surface emissivity) is expressed as
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Notably, this is the “classic” relationship between the 

surface emissivity Q-e and accretion rate M . As the disk is 

assumed to be “thin,” the heat (emission) flows out of the 

disk vertically, rather than radially. Subsequently, the total 

power radiated, namely, the total disk luminosity, is 

expressed as the integral of the total radiation flux over the 

entire surface of the disk
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We expect that this total disk luminosity would be 

the sum of Newtonian gravitational binding energy and 

rotational kinetic energy extracted from the compact or 

massive object (perhaps through the “electromagnetic 

process” proposed by Blandford-Znajek), namely,

	 ( )bind rotL E E M= +  	 (42)
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3.1.3 Surface Temperature

Lastly, assuming that the radiation from the disk is of the 

“black body” type, the surface temperature of the disk at the 

radial distance r can be expressed as
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2 sF r bT r= 	 (45)
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Therefore, compared with those of the standard thin 

disk model of Shakura and Sunyaev or Novikov & Thorne, 

the important predictions of our new candidate theory of 

ADAF can be summarized as the suppression of physical 

characteristics of the accretion disk;
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and hence more concretely,
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3.1.3.1 Note 1

In particular, the total disk luminosity responds sensitively 

to the underlying disk model and thus becomes noticeably 

suppressed, whereas the surface temperature responds 

insensitively and remains nearly the same. This feature 

of our new candidate theory of ADAF is consistent with 

the typical characteristic of the standard, existing, and 

conventional ADAF model of Narayan & Yi, according to 

whom, the temperature of the accreting gas is nearly virial; 

conversely, most of the viscously dissipated energy (i.e., the 

radiation) is trapped or stored as entropy in the accreting 

gas and is eventually advected into the central star or BH, 

leading to the low-luminosity, abnormal accretion flow.

3.1.3.2 Note 2

Our new candidate theory of ADAF also enables us to 

uncover the (possibly) true nature of advection energy 

(following the terminology of the existing conventional 

ADAF model) as the fraction of the viscously dissipated 

energy being radiated is expressed as (1 – f )Lc; conversely, 

the fraction fLc, which is stored in the accreting gas and is 

eventually advected into the central star or BH, originates 

from the recoil of the accreting gas by the scattering 

of radiation from the central star or BH. In particular, 

according to our new candidate theory of ADAF, the 

radiation pressure of the central star or BH (and the recoil 

of accreting gas because of it) renders part of the viscously 

dissipated energy to be advected into the central star/BH. 

Therefore, within the context of our new candidate theory 

of ADAF, the ADAF limit, f → 1, clearly corresponds to the 

case when the central object is maximally radiating at the 

critical Eddington luminosity (in which case the accretion 

flow essentially becomes quasi-spherical as described 

below), whereas in contrast, the “little advection” limit f → 

0 represents the case when the central object possesses very 

low luminosity.

3.1.3.3 Note 3

Lastly, we provide the emission spectrum of the accretion 

disk in some systems of interest predicted by our new 

candidate of ADAF theory.

	 For BH XBs
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	 For AGN

	

	
( ) ( )

/

//

.

1 2

5
s 8

1 43 4
T

p

K

    

M MT r 10
M /years 10 M

1      0GM L1
r 4

   
m c GM
σ
π

−
  
    
  

   −       

 





	 (51)



253 http://janss.kr 

Hongsu Kim & Uicheol Jang  Radiation Pressure Effect on Accretion Disk

3.2 Equation for the Description of Bipolar Outflows/Jets: 
the Radial Component of the Momentum Equation (Euler 
Equation)

Subsequently, within the context of our new candidate 

theory of ADAF, wherein the effect of radiation pressure 

on the accretion process is included, we aimed to provide 

a natural explanation for the widespread occurrence of 

bipolar outflows/jets that are ubiquitous in accreting 

systems, such as in BH XBs, micro-quasars, and AGN.

Accordingly, the general form of the momentum conservation 

equation or Euler equation is expressed as

	 ( )2 1
3N rad vv v p F v v

t
ρ ρ η∂   + ⋅∇ = −∇ − ∇Φ + + ∇ + ∇ ∇ ⋅   ∂   



    	(52)

where the last term on the right-hand side is the usual viscous 

force, wherein ηv denotes the (microscopic) kinematic 

viscosity and

	 rad T
IF
c
σ= 	 (53)

is the radiation force that is systematically included in 

our new theory of ADAF. In the present treatment below, 

we neglect the viscous force term and attempt to solve 

the radial and (possibly) vertical components of this 

momentum conservation equation to obtain a solution 

representing the bipolar outflow/jet. To be more concrete, 

our strategy to achieve this goal is as follows.

To demonstrate the actual occurrence of the bipolar 

outflow/jet in our new candidate theory of ADAF, we 

should find a solution to the radial and (possibly) vertical 

components of this momentum conservation equation 

that turns the inflowing gas around and renders it to flow 

outward on a radial trajectory to reach infinity with a net 

positive energy. In the standard thin disk model of Shakura 

and Sunyaev or Novikov & Thorne and even in the existing 

conventional ADAF model, the only force, apart from the 

viscous force, involved in the hydrodynamics equations 

(including this momentum conservation equation) is the 

attractive Newtonian gravity exerted by the central subject. 

Thus, the generic motion of the accreting gas is apparently 

radial inflow, which essentially hinders the construction of 

the outflow mechanism. Conversely, in our new candidate 

theory of ADAF, in the Euler equation, we used the repulsive 

radiation force in addition to the attractive Newtonian 

gravitational force. Therefore, if the repulsive radiation force 

overwhelms the attractive Newtonian gravity, we can find 

a solution to the hydrodynamics equations (including this 

momentum conservation equation), which demonstrates 

the occurrence of outflows. In particular, the repulsive 

radiation force clearly plays the key role of scattering/

reflecting the incident accreting gas-plasma.

3.3 Equations of the Vertical Structure

In general, as no net motion of the gas/fluid elements 

occurs in the vertical direction of the accretion disk, 

momentum conservation along the z-direction is reduced 

to a “hydrostatic equilibrium” condition.

We now consider the vertical  component of  the 

aforementioned momentum conservation equation (Euler 

equation). The physical meaning and role of this equation is 

as follows. By equating the component of the (Newtonian) 

gravitational force plus that of the radiation force of the 

central compact or massive star along ze  to the vertical 

pressure gradient in the disk, the thickness of the disk and 

vertical mass density profile of the accretion disk can be 

determined.

viz.

	  ( ) ,z zv v e p e
t

ρ ρ∂ + ⋅∇ ⋅ = −∇ − ∇Φ ⋅ ∂ 

 

 	 (54)

where N radF−∇Φ = −∇Φ +


  is the net, effective gravitational 

force, including the radiation force; namely,

	 .1
4

T

p

GM L
r m c

σ
π

 
Φ = − +  

 
 	 (55)

Subsequently,
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and using 2
s

dpc
dρ

=  ,
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Thus, the vertical mass density profile of the accretion 

disk is expressed by the Gaussian function,

	 ( ) ( )exp ,
2

20
2
zz z
h

ρ ρ
 

= = − 
 

	 (62)

where the “scale height”
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estimates the “half thickness” of the disk. Here the “sound 

speed” is normally assumed to be

	
/1 2

s
dpc
d ρ
 

=  
 

	 (64)

	 ( ), whole disk
gas

p

p T
mρ

= = 	 (65)

	 ( ).
41  inner disk

3

radp Tb
ρ ρ

= = 	 (66)

Finally, as the luminosity L of the central object increases, 

the Keplerian angular velocity of the fluid element decreases, 

and consequently, the scale height increases; namely, the 

disk becomes thicker. In particular, when the luminosity of 

the central compact or massive star approaches the critical 

Eddington value,

	 ,
4 p M

Edd
T

Gm c
L L

π
σ

→ = 	 (67)

the Keplerian angular velocity of the accreting gas drops to 

zero and the thickness of the accretion disk greatly blows up.

Notably, this point implies that our new candidate 

model theory of ADAF predicts that if the central object 

is maximally radiating at the Eddington luminosity, the 

accretion flow is essentially quasi-spherical. Generically, as 

the central object becomes more luminous, the accretion 

flow transitions from the disk-type to the spherical Bondi-

type.

4. CLASS OF ADAF MODELS TO ACCOUNT FOR 
THE LOW-LUMINOSITY ABNORMAL ACCRETION 
FLOW OBSERVED IN SOME BH XBs AND AGN

①	 �Optically thick ADAF model (Katz 1977; Begelman 

1978; Begelman & Meier 1982; Abramowicz et al. 

1988): at super Eddington accretion rates/luminosity, 

the inflowing accreting gas is optically thick and 

hence captures most of the radiation (i.e., the viscous 

energy), preventing it from being radiated, and 

carries it inward or “advects” it onto the central star/

BH, inconsistently resulting in the low-luminosity 

abnormal accretion flow with the standard thin-disk 

model proposed by Novikov & Thorne, 1973, Shakura 

& Sunyaev, 1973, and Lynden-Bell & Pringle 1974.

②	 �Optically thin ADAF model (Ichimaru, 1976; Rees et 

al. 1982; Abramowicz, et al., 1995; Narayan & Yi 1994, 

1995a, b): in the opposite limit of low, sub-Eddington 

accretion rates/luminosity are prevalent. Conversely, 

the accreting gas has a very low density and is thus 

optically thin and unable to cool efficiently within the 

accretion time. The radiation (i.e., the viscous energy) 

is stored in the inflowing gas as thermal energy and 

is “advected” into the central star/BH, leading to 

the low-luminosity abnormal accretion flow that 

contradicts the standard thin-disk model of Shakura 

and Sunyaev.

③	 �Our new candidate theory of ADAF at a generic 

accretion rate/luminosity; when the accretion rate/

luminosity is anywhere between those of the low sub-

Eddington and super Eddington accretion rates/

luminosity, the low-luminosity abnormal accretion 

flow can be accounted for even within the context of 

the standard thin-disk model of Shakura and Sunyaev 

or Novikov & Thorne, provided that the effect of 

radiation pressure on the accretion process is included 

in a simple but straightforward manner.

5. CONCLUDING REMARKS

In conclusion, in our study of the new candidate theory of 
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ADAF, the inclusion of the effect of radiation pressure on the 

accretion process is summarized as follows:

①	 �In the case when the central star is a non-luminous 

BH, regardless of whether it is non-rotating or rotating 

(possessing the well-known frame dragging effect), the 

stationary adiabatic accretion flow is most likely disk-

type, exhibiting features that can accurately reflect 

the predictions of the standard thin-disk model of 

Shakura and Sunyaev or Novikov & Thorne (although 

the spherical,  adiabatic,  and hydrodynamical 

accretion of the Bondi-Hoyle type might be the case in 

principle).

②	 �The other case is when the central star is highly luminous 

and exhibits nearly critical or even super Eddington 

luminosity. According to the results of our study, the 

accretion flow would exhibit features that significantly 

deviate (or depart) from the predictions of the standard 

thin-disk model of Shakura and Sunyaev. In particular, 

owing to the effect of the radiation pressure on both 

the radial and vertical structures of the disk, the low-

luminosity abnormal accretion flow of the nearly 

spherical-type is very likely to occur. Additionally, even 

for the case when the central star possesses a generic 

accretion rate or luminosity (well below the vertical 

Eddington value), the low-luminosity abnormal 

accretion flow of the nearly spherical-type can likely 

occur, thereby explaining the recent observations in 

some BH XBs and galactic nuclei.
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APPENDIX

A. An analytical solution based on the self-similar solution 

of Spruit et al. (1987)

Fortunately, an exact self-consistent solution is available 

for the hydrodynamics equations (including the Euler 

equation) within the context of our new candidate theory 

of ADAF, representing such bipolar outflows/jets. It can 

be derived from the well-known self-similar solutions 

discovered first by Spruit et al. (1987) and then elaborated 

by Narayan & Yi (1994, 1995) in their construction of the 

optically thin ADAF model.

Therefore, in the following, we shall briefly describe its 

construction. As a typical approach to study the steady 

axisymmetric accretion flow in the standard theory of 

thin accretion disks, we start with the vertical average of 

the flow to consider a two-dimensional accretion flow in 

the equatorial rϕ plane described by the following height-

integrated hydrodynamics equations comprising the 

continuity equation, radial and azimuthal components 

of the momentum conservation equation (i.e., the Euler 

equation), and energy conservation equation.

	 ( ) ,0d rHv
dr

ρ = 	 (A1)

	 ( ) ,2 2 21
K s

dv dv r r c
dr dr

ρ
ρ

− Ω = − Ω − 	 (A2)

	
( )2 2 31 s

K

d r d c r H dv
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where 
1/2
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GM
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 
Ω =  
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
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2

k K

GMv r
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 
= Ω =  

 



 and cs = P/ρ are the 

Keplerian angular velocity, and the isothermal sound speed, 

respectively, and the surface (mass) density of the gas Σ is 

expressed as Σ = 2ρH, wherein H is the scale height, H = cs /  

ΩK. We assumed the α-disk prescription by Shakura & 

Sunyaev (1973), wherein the kinematic coefficient of 

viscosity is expressed as

	 .
2
s

stt
K

cv c αα= =
Ω

	 (A5)

Subsequently, the parameter f is used to measure the 

degree to which the flow is advection-dominated, such that 

the two extreme limits f = 1 and f = 0 respectively represent 

pure advection (i.e., no radiative colling) and very efficient 

colling. For convenience, we defined the parameters ϵ ≡ (5 

/ 3 – γ) / (γ – 1) and ϵ’ ≡ ϵ / f, wherein γ denotes the ration 

between the specific heats, and ϵ = 0 in the limit γ = 5 / 3 

and ϵ = 1 when γ = 4 / 3. For simplicity, we assumed that ϵ is 

independent of r. In the energy conservation equation, Q+ 

denotes the energy input per unit area owing to the viscous 

dissipation, whereas Q– denotes the energy loss through 

radiative colling. As is evident, these four height-averaged 

differential equations provide a self-similar solution 

(references) of the following form.

	 / / /, , , ,3 2 1 2 3 2 2 1
sr v r r c rρ − − − −∝ ∝ Ω ∝ ∝ 	 (A6)

or more precisely,

	 ( ),5 2 3á
3 5 2k Kv g v vα
α

′
′+

= − ≈ −
+ ′





	 (A7)

	 ( ) ( )
/ /

, ,
1 2 1 2

2

2 5 2 2
9 5 2K Kg α
α

 +   Ω = Ω ≈ Ω   + 

′ ′ ′
′
 ′

  



	 (A8)

	
( ) ( ), ,2 2 2

2

2 5 2 2
9 5 2s K Kc g v vα
α

′
′ ≈

+ ′
+

=





	 (A9)

where
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Notably, the positivity of the Bernoulli constant Be, and 
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hence b, implies that the viscous stress transfers energy 

from small to large radii. Thus, whenever b is positive, it 

implies that if the inflowing gas could somehow be turned 

around to let it flow outward on a radial trajectory, the gas 

would reach infinity with net positive energy (Abramowicz 

& Lasota 1980; Paczynski & Bisnovatyi 1981; Novikov 1997; 

Jang et al. 2021; Jang & Kim 2023).

Notably, the volume mass density ρ may be obtained in practice 

from the mass accretion rate, as follows: M 2 rv 4 rvHπ π= Σ = .

Notably, in the limit of very efficient colling f → 0, ϵ’∞, 

the solutions provided in equations can be reduced to those 

of the standard thin-disk model (in this study, we do not 

consider the case of the thick disk) using v, cs\llvK  and Ω → 
ΩK. Thus, in this study, we mainly focused on the opposite 

limit of advection-dominated accretion flow, wherein f is a 

reasonable fraction of unity; namely, where it has a generic 

value, and thus ϵ’ ~ ϵ < 1.

Moreover, the radial component of the momentum 

conservation equation indicates that the self-similar 

solution can satisfy the following:

	 ;2 2 2 2 21 5 0
2 2K sv r c+ Ω −Ω + = 	 (A14)

this in turn allows us to compute the normalized parameter 
2

e kb B / v= , where Be is the Bernoulli constant. In adiabatic 

flows in the absence of viscosity,
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Some basics in the classical theory of radiation:

a central star is a “black” body; 

the accreting object is an atom (with a cross-sectional 

area of σT);

the luminosity is the power of the radiated energy per 

unit time mostly through an emission of (massless) photons 

moving at the speed of light c.

	 E = pc; 	 (A16)

E Ppower L c cF
t t

 ∆ ∆
= = = = ∆ ∆ 

. The intensity is the radiated 

(transferred) energy per unit time per unit area.
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Radiation pressure is the radiation stress tensor

	 1 1
rad

F P E IP
A A t A t c c

∆ ∆   = = = =   ∆ ∆   
	 (A18)

For a perfectly absorbing object ( ) radF p / t P I / c= ∆ ∆ =  .

For a perfectly reflecting object ( ) radF 2 p / t P 2I / c= ∆ ∆ = .

Lastly, the “radiation force” on an object with an effective 

cross-sectional area of σ is

	 .rad radF Pσ= 	 (A19)

Thus, if the accreting object is the “free-electron,” its 

(classical) cross section is σT , and hence

	 .rad rad T T
IF P
c

σ σ= = 	 (A20)


