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In this work, the problem of resonance caused by some gravitational potentials due to Mercury and a third body, namely the 
Sun, together with some non-gravitational perturbations, specifically coronal mass ejections and solar wind in addition to 
radiation pressure, are investigated. Some simplifying assumptions without loss of accuracy are employed. The considered 
force model is constructed. Then the Delaunay canonical set is introduced. The Hamiltonian of the problem is obtained then 
it is expressed in terms of the Deluanay canonical set. The Hamiltonian is re-ordered to adopt it to the perturbation technique 
used to solve the problem. The Lie transform method is surveyed. The Hamiltonian is doubly averaged. The resonance capture 
is investigated. Finally, some numerical simulations are illustrated and are analyzed. Many resonant inclinations are revealed.
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1. INTRODUCTION 

The resonance happens when a characterized quantity/

quantities of two/more bodies' motion is repeated at regular 

periods of their revolution, i.e., it is nearly commensurable, 

or their proportion is near to the division of a number. 

It can be caught easily by the presence of small divisors 

at equations of motion integration. The phenomena of 

resonance can be utilized to avoid perturbation from the 

gravitational potentials. The mean motion resonance 

between two celestial bodies means repetition of the 

geometrical configuration orbits periodically, which can 

warranty stability. Therefore, it is suitable to present an 

accurate and rigorous model to describe such natural 

interactions.  

Many works are devoted to studying the resonance 

phenomena in celestial mechanics. The most relevant 

studies are Celletti (1990); Gilthorpe et al. (1990); Delhaise 

& Morbidelli (1993); Breiter (1999); Costa Filho & Sessin 

(1999); Celletti & Chierchia (2000) and Breiter (2001a, 

2001b, 2003). For numerous years, scientists have accounted 

for the perturbation of the third body as a fundamental 

issue of studying the resonance problem and its behavior 

along the run. The readers can refer to Broucke (2003); 

Prado (2003) to review the problem therein. The averaging 

technique is usually used to address the third-body effect; 

see, for example, Szebehely (1964); Roth (1982); Rickman 

& Froeschle (1983); Ferrer & Osácar (1994) and Rahoma 

(2014). It still represents a topic of work, especially when 

the resonance and long-term perturbations are investigated 

as; Henrard & Caranicolas (1989); Folta & Quinn (2006); 

Domingos et al. (2008) and Carvalho et al. (2009a, 2009b) 

and discussed the lunisolar effect on Earth satellites of high-

altitude using one average-model over their short-periods, 

while Scheeres et al. (2001) and Khattab et al. (2020) used 

a doubly averaged model; one over the satellite is short-

period and the other for the third body is one. Some articles 

have tried to solve the problem of third perturbation, 

neglecting the equatorial plane inclination; Carvalho et al. 

(2008, 2010); Lara (2010, 2011) and Rahoma & Abd El-Salam 

(2014). Also the direct solar radiation pressure can modify 

the resonance dynamics, see for instant, Musen (1960); 

Cook (1962); Kozai (1963); Sehnal (1970, 1975); Anselmo et 

al. (1983) ; El-Saftawy et al. (1998); El-Saftawy (2005) and El-

Enna et al. (2006). 

Pichierri et al. (2018), Chametla et al. (2020), and Lari 
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et al. (2020) characterized the resonant studies comparing 

numerical simulations and semi-analytical formulae. Also, 

they described the Galilean satellites' future behavior over 

the lifetime of the Solar System and quantified the stability 

of the resonance.   

 The insufficient information and the unclear perception 

about Mercury leave many important questions unsettled 

about the solar system's origin and its early history. Mercury 

has been visited only during some space missions started by 

flyby Mariner 10 in 1974 and 1975. The distance of Mercury 

from the Sun varies from 0.3 Astronomical Unit (AU) up 

to 0.43 AU, which raises the Sun effect on any Mercurian 

orbiter from the coronal mass ejections, solar wind, solar 

flares in addition to the Sun attraction as a third body. The 

nearness of Mercury's orbit for the Sun affects Mercury's 

space environment than those on Earth dramatically. 

This will lead to significant modification for the orbit of 

any Mercurian orbiter and has great effects on the orbiter 

dynamics. The phasing of the orbiter with respect to the Sun 

and its position in the Mercury's magnetosphere will highly 

affect its dynamics. 

 

2. HIGHLIGHT ON MERCURY MISSIONS 

The proximity of the planet Mercury to the Sun, as well 

as its small size, still represents a mystery for astronomers. 

Neither the ground observations nor the space ones found 

any evidence for an atmosphere exist at any wavelength, 

whether infrared, optical, or radar, which may recommend 

that Mercury's surface may maintain many events in the 

solar system history. So, the missions to Mercury were 

started despite its extreme difficulties, as the amount of 

energy required for such mission and the intercept of the 

spacecraft's trajectory with Venus' orbit. Lately, Venus' 

gravity pull was utilized to modify a mission's transfer orbit. 

 

2.1 Mariner 10 

Mariner 10 utilized Venus' gravitational attraction to 

reach Mercury for the first time to execute flybys of two 

planets in the same mission in Nov. 1973. Mariner 10 

sent back different images for the sunlit hemisphere and 

discovered a field of dipole magnetic such that of Earth. 
 

2.2 BepiColombo 

As a dual mission in 2000, ESA and JAXA announced starting 

to explore Mercury; BepiColombo, by contributing to Mercury 

Planetary Orbiter (MPO) and Mercury Magnetospheric 

Orbiter (MMO), respectively. Once they orbit the planet, 

they will start to explore its surface and environment 

comprehensively. BepiColombo was started in Oct. 2018, 

and it will reach Mercury after seven years with modification 

of its trajectory by nine times. 
 

2.3 Messenger 

In August 2004, NASA launched MESSENGER to reach 

Mercury at polar orbit in Mar. 2011. By assisting the Earth's 

gravity, Venus' gravity, and Mercury itself, MESSENGER was 

orbited in a near-polar and highly elliptical orbit around 

Mercury twice every 24 hours. 

There are many missions to Mercury that were planned 

in the present or in the future. It is helpful for such missions' 

design to prove the orbits from different perturbations that 

come from gravity or non-gravity. 

The aim of this work is to highlight resonance value 

and investigate the resonances cases appearing due to 

commensurability of the mean motions of Mercury and 

the Sun as a third body. The objectives are located in 

presenting the resonant inclination behavior as a function 

of changing of orbital elements (argument of periapsis, 

eccentricity, longitude of the ascending node) at different 

values of the semi-major axis, i.e., the resonant inclination 

is the dependant variable while the orbital elements are 

independent variables.  

 
3. PERTURBING FORCES MODELS 

In the present work, the gravitational perturbations due 

to Mercury's oblateness and the Sun's gravity as a third-

body, in addition to the non-gravitational perturbations 

due to Sun's coronal mass ejection, solar wind, and the 

solar radiation pressure, will be considered. As well as these 

perturbations, other forces, whether change significantly 

in time or random, have to add to the dynamics in further 

studies like Venus gravitational effects and/or Mercury's 

magnetic field effects, especially at Solar mass flux activity. 

 
3.1 Assumptions

Within the accuracy respecting, the following assumptions 

will be introduced to simplify the dynamics sharpness.

1. The reference system center is the center of Mercury;

2. A Mercury's orbiter is considered as massless;

3. �The Sun revolves in an apparent circular orbit about 

the Mercury, i.e. ft + ωt = θ, where ft is the true anomaly 

of the Sun, ωt is the periapsis argument of the Sun and θ 
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is the mean longitude of the Sun.

4. �The orbiter's motion is considered as Keplerian motion 

assuming the presence of the Sun's gravity and its 

radiation pressure as perturbing forces.

5. �Suppose that the distance and the direction of the Sun-

orbiter are the same as that for Sun-Mercury.

6. �Using the Keplerian orbital elements to characterize 

the orbiter's motion; a symbolizes for semi-major axis, 

e symbolizes for orbit's eccentricity, I symbolizes for 

inclination of the orbital plane due to the Mercury 

equatorial place, Ω symbolizes for orbit's longitude of 

ascending node, ω symbolizes for orbit's argument of 

periapsis and M symbolizes for orbiter's mean anomaly.

3.2 The Treated Gravitational Forces

The Hamiltonian of the problem can be formulated as

	 ( )1
2G M tP P V V= ⋅ − −
 

 	 (1)

where P
→

 represents to canonical momentum vector, VM 

and Vt represent to Mercury’s and Sun gravitational field, 

respectively.

Recall the Laplace’s equation ; ∇2VM = 0, solution for a 

scalar function; VM, using (r,δ,φ) as spherical coordinates 

on domain r > 0, 0 < δ < π, 0 ≤ φ ≤ 2π it can be expressed as a 

spherical harmonics infinite series, Arfken (2012). 

Let the gravitational field of Mercury is an axially 

symmetry, where the axes origin is located at its center of 

mass, then the scalar function can be written as VM; see for 

instant Fitzpatrick (1970)
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∑
	(2)

where μM is the Mercury’s gravitational parameter, RM is 

the Mercury’s equatorial radius, Jn are the zonal harmonic 

coefficients, J22 is the first tesseral harmonic, (r,δ) are the 

orbiter coordinates as appeared from Mercury’s center, 

Pn(sinδ) represent the Legendre Polynomials, f defined the 

true anomaly and finally, τ is standed for the Mercurian 

reference sidereal time. 

To simplify the writing, let us use S = sinI, C = cosI, 

.
m

i jF if j mω= + + Ω  and 0
1,1sin sinS Fδ = , Abd El-Salam et al. 

(2006) and Rahoma et al. (2014).

3.2.1 Third Body Perturbation

The perturbation due to the third body is given by

	 ( )
2 3

2
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k

t t
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kt t

a rV P
r r

µ
ψ

∞

=

 Θ
=   

 
∑ 	 (3)

where μt = GMt,ψ symbolizes to the Sun-Orbiter angle from the 

Mercury, r
→
 is the position of orbiter relative to Mercury, Mt is the 

Sun's mass, and G symbolizes to the gravitational constant. 𝛩 

symbolizes to the mean motion of the Sun, for at symbolizes to 

the semi-major axis of the Sun's orbit as it appear from Mercury. 

For the model, retaining the disturbing function P2 and P3 (R2 

and R3) in the summation yields;

	 Vt = R2 + R3	 (4)

where

	
3 22 2
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	 (6)

where cosψ can be expressed as

	 cosψ = αcosf + βsinf

with

α = cosω cos(Ω – ft – ωt) – cosI sinω sin(Ω – ft – ωt), 

β = –sinω sinω cos(Ω – ft – ωt) – cosI cosω sin(Ω – ft – ωt)

Adopted from Abd El-Salam (2007) with permission of 

Elsevier.

3.3 The Solar Radiation Pressure Effect

All objects in the solar system suffer from the sun’s 

radiation force that is called solar radiation pressure 

especially those at closer distances from the Sun. Solar 

radiation pressure significantly affects  the smaller bodies as 

their surface area to mass ratio (Ai / m) are large somewhat 

unless their orbital position lies in the orbited body shadow. 

The orbital elements are periodically changed as a result of 

this force. In view of the assumptions, the surface elements 
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contribution to total acceleration can be formulatted as:

	 ( )0 ˆcos 1M si
SR i i

l

S aA
F s

m c a
γ β−

 
= − −  

 



	 (7)

where S0 = 1,370 W/m2 symbolizes to the solar constant 

(identical to the average distance of Mercury-Sun aM–s) Lewis 

(2004), γi symbolizes to the incidence angle, βi symbolizes 

to the coefficient of reflection for thi  orbiter’s surface and 
ŝ symbolizes to the unit vector of Orbiter-Sun direction, 

where the reference frame is the Mercurocentric equator, 

and it can be written as 

	 s ̂̂ = cosθ î + cosε sinθ ĵ + sinε cosθ k̂

where θ(= 𝛩t)t symbolizes to time, and ε symbolizes to 

the obliquity (Mercurian equator plane with respect to the 

ecliptic).

3.4 The Coronal Mass Ejections and Solar Wind Effects

Solar mass ejects protons to the surrounding space due to 

solar wind, solar flares and corona mass ejection. Actually, 

solar wind is the most important force in this ejection. 

Typically at Earth,  solar wind speed nearly 400 km/s, Breen 

et al. (2002) and its density nearly 10 protons/cm3. On other 

hand, thanks Mariner 10, at Mercury solar wind speed 

nearly 423 km/s while its density nearly 60 protons/cm3.

Assume that the Mercurian orbiter is impacted by 

inelastic particles and the angular span of ejections are 

spherical envelope, The solar wind perturbing acceleration 

and  coronal mass ejections perturbing acceleration can be 

formulated, respectively, as, see Abd El-Salam (2007),

	 2 ˆi
SW SW P SW

SW

A
F n M v s

m
 

=   
 



	 (8)
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CME CME
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MA
F v s

m V
 

=   
 



	 (9)

where(Ai / m)SW defined area-mass ratio which exposed 

to solar wind, nSW symbolizes to particle density, vSW 

symbolizes to solar wind velocity, and MP is the proton 

mass, While (Ai / m)CME defined area-mass ratio which 

exposed to coronal mass ejection , VCME symbolizes to the 

volume, MCME symbolizes to the mass and vCME symbolizes to 

coronal mass ejections velocity.

4. CANONICAL FORMULATION AND ORDERING

Selecting Delaunay variables as canonical ones which 

can be defined as

	
2
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Now to insert the forces F
→

SR, F
→

SW, and F
→

CME into the 

problem’s Hamiltonian as a adopted solution technique, 

they would be rewritten as a gradient  for combined 

function (let Φ⊙) i.e.
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To obey equation (11),  

	 ( )( )ˆ
SR SW CMEF r s rΦ = − ⋅ = + + ⋅

 



 

   	 (12)

where F
→

⊙ is an explicitly time dependence within the 

Sun’s mean longitude θ(= Θt). 

To recover equations autonomous, a new conjugate pair 

of  variables; (k,K), will be setted to Delaunay variables 

where k = Θt + const. 	

Utilizing the extended Delaunay variables, the Hamiltonian 

of the three forces can be formulated as

	ℋ ⊙s = ΘK + Φ⊙	 (13)

with  

 

	 ( )
1 1 1

2
. ,

1 1

1
4 SR SW CME m n m n

m n

aL C F
r

−

=− =−

 
Φ = + +  

 
∑ ∑

  

where Fm,n = f + g + mh + nk.

The non-vanishing coefficients for C’s are  

C1.–1 = (1 + C)(1 + Cε), C1.1 = (1 + C)(1 – Cε), 

C–1,1 = (1 – C)(1 + Cε),
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C–1,–1 = (1 – C)(1 – Cε), C0,–1 = 2SSε, C0,1 = –2SSε

with Cε = cosε, Sε = sinε 

5. ASSESSMENT OF THE ORDERS OF MAGNITUDE

The magnitude orders φ(x),x = 1,2,… in view of a small 

parameter; ∈ for perturbing terms can be clarified as, see 

Abd El-Salam (2007),

	 ( ) ( )1xx xϕ −∈ ∈≤ ≤∈ ∈

In our problem, the Mercurian coefficients J2 ≃ C22 is  

considered as a first order.  Also the orbiter’s mean motion 

around Mercury varies from 2,500 rev./day up to 100 rev./

day. Also, the solar mean motion Θ ≅ 0.1 rev./day. i.e, R2 

is considered as of the first order. Finally, J3, J4, J5 are are 

considered of the second order.

Now  t h e  mag n i t u d e  o rd e r  f o r  e a c h  c o n s i d e re d 

nongravitational force is determined by a single nominal 

magnitude which is
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Therefore, truncating the series of the Mercurian 

gravitational potential up to J5, the perturbing Hamiltonians 

(1) can be written as, Abd El-Salam et al. (2006):
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6. METHODOLOGICAL TECHNIQUE

Lie transforms method; initially developed for vector 

fields by Deprit (1969) and Kamel (1969),  and others, is a 

powerful procedure to deal with a perturbed Hamiltonian 

depending on a small parameter. This method allows 

recursive routines to transform the original system 

perturbation to another one which features by flexiable 

properties.

Let the Hamiltonian of a problem be a function of 

canonical variables (the coordinates and momenta) i.e. 

𝒦(q,Q), the motion equations can be formulated as:

	 ,                                q Q
Q q
∂ ∂

= = −
∂ ∂
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In a problem, considering a small parameter; ε, and the 

Hamiltonian 𝒦 may be expand as:
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where 𝒦0 is the unperturbed Hamiltonian (integrable 

part).

To improve the solution considering the perturbing 

Hamiltonian 𝒦n, a one /or more canonical transformations 

analytic in ε at ε = 0 is required to remove the fast and slow 

angles from 𝒦n respectively.

The transformed Hamiltonians and its corresponding 

generators can be formulated as:
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Clearly from the described technique to deal with the our 

perturbed Hamiltonian ℋ(l, g, h, k, L, G, H, K; J2), we have to 

do two canonical transformations to eliminate:

1- two fast variables namely the orbiter’s mean anomaly l 

in addition to  the solar  mean longitude k to be ℋ*(–, g, h, –, 

L, G, H, K; J2).

2- two  slow variables, g, h to be  ℋ**(–, –, –, –, L, G, H, K; J2). 

The first averaging process yields
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and the second averaging process yields

	

	
2

** **2

0 !

n

n
n

J
n=

=∑  	 (21)
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 	(23)

The corresponding generator can be written in the form
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where ,0
0,2
m

pB  are functions in momenta only.

7. RESONANCE CAPTURE

Suppose a periodic mechanical system has a number 

of natural frequencies.Whenever two or more of these 

frequencies are nearly commensurable, resonance arises. 

Simply this may be formulated n1 / n2 = p / q where n1 and n2 

are the two natural frequencies and p and q are small prime 

integers. 

The theoretical problem in cases of near commensurability 

motion is due to the small divisors appearance in the 

developments of the usual asymptotic representations of 

the solution. These divisors have the form pn1 – qn2, leading 

to an unsatisfactory solution.

In celestial mechanics theses problems type present 

themselves clearly.  Like the Earth’s satellite critical 

inclination as a result of  near-commensurability of draconic 

and the anomalistic frequencies. In addition,the mean 

motion of an artificial satellite may be commensurable with 

the angular velocity of the primary body.

T h e  re s o na n c e  ca s e s  w i l l  b e  c re at e d  w h e n  t h e 

denominators generating function become sufficiently 

small or vanish. These conditions can be formulated as:
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and
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If we substitute H = Gcos I in the equation (24), we get a 

quadratic function in the inclination as:

	 γ0 + γ1 cos I + γ2cos I2 = 0	 (25)

The solution (25) yields the different resonant inclinations as
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8. OUTCOME SIMULATIONS

In this section, the behaviour of the resonant inclination 

is investigated as a function of  orbital elements. A following 

mercurian data are imposed in the simulations, Semi-major 

axis; aM = 5.791 × 107 km, Eccentricity eM = 0.205, Orbital 

period is 87.969 days, Inclination; I = 7.0°, Longitude of 

perihelion, ω = 77.46°, Longitude of ascending node, Ω = 

48.33° and Orbit Obliquity is 0.1°. In addition to, Mercury’s 

Mass MM = 3.302 × 1023 km, RM = 2,439 km, μM = 0.02203 × 

106 km3s–2, J2 = 60 × 10–6 and J22 = 10 × 10–6. In the light of 

equation (25) we can treat the resonant inclination as a 

dependant variable and the orbital elements as independent 

variables. In each case study we will fix all orbital elements 

except that element we need to observe the behaviour of 

the resonant inclination under its change. In each figure 

we have fixed two orbital elements, see each figure caption. 

Also different colored curves are plotted in each figure, each 

color corresponds to a specified value of the semi-major 

axis as shown in the legend attached to the right of  the 

diagram.

8.1 Resonance Analysis Versus the Argument of Periapsis

In this case we study the behaviour of the resonant inclination 

in degree in terms of changing the argument of periapsis. 

8.1.1 Analysis of Figs. 1-4

It is observed that all curves in Figs. 1–4 meet at two 

resonant inclinations, a relatively small perturbations 

in these inclinations are observed. These results can be 

summerized in the following Table 1.  

8.2 Resonance analysis versus the eccentricity

In this case we study the behaviour of the resonant 

inclination in degree in terms of changing the eccentricity 

Figs. 5–8. The dynamics is simple. Each case is relatively 

Fig. 1. The resonant inclination dynamics versus the argument of periapsis, 
Ω = 90˚, e = 0.

Fig. 2. The resonant inclination dynamics versus the argument of periapsis, 
Ω = 90˚, e = 0.1.
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represented by constant linear function except at the semi-

major axis equal 3,200 km and 3,400 km. The dynamics in 

these two cases are also approximately linea form e = 0 to 
about e = 0.1 and beyond that it bahaves nonlinearly, the 

two roots meet at the following values, see Table 2.

8.3 Resonance Analysis Versus the Longitude of the 
Ascending Node

In this case we study the behaviour of the resonant 

inclination in degree in terms of changing the longitude of 

the ascending node.

Fig. 4. The resonant inclination dynamics versus the argument of periapsis, , 
Ω = 90˚, e = 0.2.

Table 1. Resonant inclinations versus argument of periapsis

g I  g I  g I 

Fig. 1, 2 Fig. 3 Fig. 4 

56.53° 120° 57.32° 120° 59.28° 120° 

123.3° 120° 122.5° 120° 121.3° 120°

62.81° 46.29° 62.81° 46.29° 64.78° 45.02° 

123.3° 46.29° 116.6° 45.02° 116.6° 45.65°

Fig. 5. The resonant inclination dynamics versus the eccentricity, Ω = 60˚, 
ω = 45˚.

Fig. 6. The resonant inclination dynamics versus the eccentricity, Ω = 62˚, 
ω = 45˚.

Fig. 7. The resonant inclination dynamics versus the eccentricity, Ω = 72˚, 
ω = 45˚.

Fig. 8. The resonant inclination dynamics versus the eccentricity, Ω = 74˚, 
ω = 45˚.

Table 2. Resonant inclinations versus eccentricity and semimajor axes

Orbital element Fig. 5 Fig. 6 Fig. 7 Fig. 8 

e 0.1884 0.1165 0.1176 0.1405 

I 85.67° 86.31° 86.31° 85.67°

a 3,400 km 3,200 km 3,400 km 3,200 km 

Fig. 3. The resonant inclination dynamics versus the argument of periapsis, , 
Ω = 90˚, e = 0.15.
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8.3.1 Analysis of Figs. 9-12

It is observed that all curves in Figs. 9–12 meet at two 

resonant inclinations, a relatively small perturbations in 

these inclinations are observed due to the change in the 

eccentricity from figure to figure. These results can be 

summerized in the following Table 3.  

9. Conculsion 

Due to the importance of the resonance dynamics, We 

have treated the problem of resonance caused by the some 

gravitational as well as nongravitational perturbations. The 

treated problem is of special interest due to many missions 

planned to Mercury, in past, present and in future. The important 

advantage of resonance study is to protect and preserve the 

orbits from the perturbations due to different gravitational 

forces. In order to make the problem tractable, we utilized 

some simplifying assumptions. The considered force model is 

constructed. Then the Deluanay canonical set is intorduced. We 

formulate the problem using the Hamiltonian framework, and 

orderd the Hamiltonian, then we used Lie transform to doubly 

average the problem.We compute the resonance capture. At the 

end of the work, we give some numerical simulations to capture 

the resonant inclinations, i.e. for eccentricity e = 0.2, and at Ω = 

90˚, there are two resonant inclinations I = 46˚ and 120˚. Also, at 

ω = 45˚, there are two resonant inclinations I = 55˚ and 111˚ at 

different values for semi-major axis.
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Fig. 9. The resonant inclination dynamics versus the the longitude of the 
ascending node, e = 0, ω = 45˚.

Fig. 10. The resonant inclination dynamics versus the the longitude of the 
ascending node, e = 0.1, ω = 45˚.

Fig. 11. The resonant inclination dynamics versus the the longitude of the 
ascending node, e = 0.15, ω = 45˚.

Fig. 12. The resonant inclination dynamics versus the the longitude of the 
ascending node, e = 0.2, ω = 45˚.

Table 3. Resonant inclinations versus argument of periapsis

h I h I h I h I 

Fig. 9 Fig. 10 Fig. 11 Fig. 12 

45.15° 55.82° 44.36° 55.82° 44.36° 55.82° 45.54° 55.82° 

45.15° 111.1° 44.36° 55.82°  44.36° 110.4°  43.58° 110.4°

135° 55.82° 135° 46.29°  135° 56.45°  135° 56.45° 

135° 111.1°  135° 111.1°  135° 109.2°  135.8° 110.4°
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