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Recovery of Asteroids from Observations of Too-Short Arcs by 
Triangulating Their Admissible Regions
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The data set collected during the night of the discovery of a minor body constitutes a too-short arc (TSA), resulting in failure 
of the differential correction procedure. This makes it necessary to recover the object during subsequent nights to gather 
more observations that will allow a preliminary orbit to be calculated. In this work, we present a recovery technique based on 
sampling the admissible region (AdRe) by the constrained Delaunay triangulation. We construct the AdRe in its topocentric 
and geocentric variants, using logarithmic and exponential metrics, for the following near-Earth-asteroids: (3122) Florence, 
(3200) Phaethon, 2003 GW, (1864) Daedalus, 2003 BH84 and 1977 QQ5; and the main-belt asteroids: (1738) Oosterhoff, (4690) 
Strasbourg, (555) Norma, 2006 SO375, 2003 GE55 and (32811) Apisaon. Using our sampling technique, we established the 
ephemeris region for these objects, using intervals of observation from 25 minutes up to 2 hours, with propagation times 
from 1 up to 47 days. All these objects were recoverable in a field of vision of 95’ × 72’, except for (3122) Florence and (3200) 
Phaethon, since they were observed during their closest approach to the Earth. In the case of 2006 SO375, we performed an 
additional test with only two observations separated by 2 minutes, achieving a recovery of up to 28 days after its discovery, 
which demonstrates the potential of our technique.
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1. INTRODUCTION 

Orbital dynamics of minor bodies of the solar system is a 

current area of interest in astronomy, especially when these 

are newly discovered objects, i.e., there are no previous 

records. Different observatories around the world report the 

finding of these objects on a daily basis, but due to the short 

interval of observation (too-short arcs, TSA), the astrometric 

data collected are not sufficient to establish a preliminary 

orbit (Gronchi 2004). This is because the classic methods of 

initial orbit determination fail in this type of case (Milani & 

Knežević 2005; Espitia et al. 2020).

In order to establish a preliminary orbit for new objects, 

it is necessary to ensure their re-observation following the 

nights after the discovery. This task requires anticipating 

their predicted location in the celestial sphere, a procedure 

known as recovery (Milani 2001; Milani & Gronchi 2009). The 

utility available online known as New Object Ephemerides 

( ht t p : / / w w w . m i n o r p l a n e t c e nt e r. n e t / i au / M P Ep h /

NewObjEphems.html) is a service offered by the Minor 

Planet Center (MPC) for the follow-up of new objects. 

However, this service is based on ephemeris calculation via 

the orbit-fitting procedure by Väisälä (Gwyn et al. 2012), 

which is a classic method that provides acceptable results 

for main-belt asteroids (MBAs) but not for near-Earth 

asteroids (NEAs; http://www.cadc-ccda.hia-iha.nrc-cnrc.

gc.ca/en/ssois/documentation.html#ephem). In addition, 

this fitting applies the approximation of assuming that the 

object is observed at its perihelion (Väisälä 1939; Kristensen 

2006).

In contrast to classical methods, Milani et al. (2004) use 

the concept of the admissible region (AdRe) to delimit the 
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location region of an asteroid seen from Earth, followed 

by triangulation sampling within this region to anticipate 

the follow-up. While in the literature, there are different 

applications of this technique in the study of space (Tommei 

et al. 2007; Maruskin et al. 2009; Farnocchia et al. 2010; 

DeMars et al. 2012), and in the study of Earth impactors 

(Valk & Lemaitre 2006; Spoto et al. 2018), the only examples 

of the method of Milani et al. (2004) being applied for 

follow-up purposes are NEA 2003 BH84 (Milani et al. 2004) 

and the centaur (60558) Echeclus (Farnocchia et al. 2015). 

Given the above, in Espitia Mosquera & Quintero Salazar 

(2019), we extend this sample by applying the method to 

delimit the region of space in which a set of 6 asteroids (3 

NEA, 2 MBA, and 1 Hilda) were at a given date.

In this article, we present an AdRe sampling method 

based on the constrained Delaunay triangulation, which 

can establish a region of possible orbits of a minor body 

determined from a TSA observation. This set of orbits can 

determine the search area of the object in the celestial sphere 

for follow-up purposes. Our technique does not require mesh 

smoothing, which reduces the computational cost.

In addition, we extend the application sample of the 

technique of Milani et al. (2004) by determining the AdRe 

and applying our triangulation in the follow-up of a set of 12 

asteroids (6 NEA, 2 MBA, 1 Hungaria, 2 Hilda, and 1 Jupiter 

trojan).

Based on the results obtained in this work, we discuss the 

capabilities and limitations of the method.

We implement our follow-up technique in a web 

service available at http://observatorioenlinea.utp.edu.

co/recoveryservice/. The source code of the algorithm is 

available in that same link under an open-source license.

 

2. MATERIALS AND METHODS

2.1 Admissible Region (AdRe)

According to Milani et al. (2004), based on an attribute 

(Milani 2001) given by the expression (1), the AdRe of an 

object is defined as the set of all possible (ρ,ρ4 ) that satisfy 

the following conditions:

I.  The object belongs to the solar system and is not a long-

orbital-period celestial body. This implies considering 

elliptical orbits with heliocentric energies E⊙ less than 

–k2/2amax, with amax = 100 au and k = 0.01720209895 

(Gaussian gravitational constant).

II.  The object is not immersed in the Earth’s gravitational 

field; that is, it has a geocentric energy E⊕ ≥ 0 while it is 

within the Earth’s radius of influence (RSI = 0.010044 au).

 

 ( ) ) 2, , , , ,
2 2

A π πα δ α δ π π
 

= ∈ − × − × 
 



   (1)

Condition (1) establishes the upper limit of the AdRe, 

which can have at most two connected components, in the 

extreme case in which asteroids with a perihelion greater 

than 28 au are studied (Spoto et al. 2018). Regarding the 

lower limit, according to condition (2), it is given by the 

curve of geocentric energy equal to zero (if 0 < ρ < RSI), or by 

a straight-line segment ρ = RSI and two arcs corresponding 

to the geocentric energy. It is even possible to constrain 

the lower limit further by ignoring the orbits belonging to 

meteoroids that are too small to be considered sources of 

meteorites. This is achieved by invoking the condition H ≤ 

Hmax (Spoto et al. 2018), with Hmax = 34.5, corresponding to 

the threshold for meteors (Milani et al. 2004).

In Espitia Mosquera & Quintero Salazar (2019), we 

determine the AdRe's of a sample of 6 asteroids from 

the sets of observations that constitute TSAs, using the 

geocentric and topocentric variants and the logarithmic and 

exponential metrics. We find that the topocentric variant 

considerably reduces the search area of the AdRe's since 

it involves additional constraints, such as the exclusion 

of meteors. Furthermore, we find that the AdRe's that 

were generated from a topocentric variant have simpler 

geometries compared with their geocentric counterparts. 

Regarding the metrics, we conclude that the logarithmic 

metric is adequate for analyzing the regions near the lower 

limit of the AdRe because this scale allows us to see the 

characteristics at the values in the distance near to the 

observer, whereas the exponential metric is adequate for the 

regions near the upper limit. The AdRe's obtained not only 

excluded those bodies dominated by Earth’s gravity but also 

considerably reduced the search area, thus optimizing the 

subsequent sampling from a triangulation.

3. SAMPLING OF THE ADRE

The diagram shown in Fig. 1 summarizes the triangulation 

and follow-up process that we implement in this work. 

First, we sampled the AdRe boundary through a sampling 

algorithm for a rectifiable curve (blue block) proposed in 

Milani et al. (2004). Then, we introduced a sampling strategy 

for the interior of the AdRe based on the constrained 

Delaunay triangulation (purple block). Next, we propagated 

all possible orbits to a later date (red block). Finally, we 

http://observatorioenlinea.utp.edu.co/recoveryservice/
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calculated the ephemerides for each of the propagated 

orbits; that is, we found the region of location of the body 

under study in the celestial sphere for a specific date (yellow 

block). 

3.1 Sampling of the AdRe Boundary

According to Milani et al. (2004), the AdRe has an upper 

limit given by the arcs of the curve E⊙(ρ,ρ4) = 0 or the curve 

E⊙(ρ,ρ4) = –k2/2amax (symmetric with respect to the line ρ 4 =   

–c1/2). In addition, the lower limit is given by the arcs of the 

curve E⊕(ρ,ρ4) = 0 (symmetric with respect to ρ 4 = 0) and the 

segments of the lines ρ = ρH, ρ = RE and ρ = RSI.

The sampling of these AdRe boundaries consists of 

choosing points that are equispaced at the boundary; that is, 

if the boundary is parametrized by the arc length s, then the 

distance of each pair of consecutive points corresponds to 

a fixed increment of s. In order to avoid the calculation of s, 

Milani et al. (2004) propose an algorithm that, from a large 

number of points equispaced on one of the two abscissas, 

applies an elimination rule that is iterated until the desired 

number of points at the boundary are left. The points thus 

obtained are close to the ideal distribution, equispaced 

along the arc length. The symmetry with respect to ρ 4 =  –c1/2 

allows sampling the upper curve of E⊙(ρ,ρ4 ) from ρH to the 

maximum value ρmax. Likewise, for the sampling of the lower 

limit, we apply the same procedure using the symmetry with 

respect to ρ4  = 0 of the curve E⊕ = 0. 

Fig. 2 presents the algorithm that we implement for 

sampling the AdRe boundary. The algorithm starts with 

Fig. 1. General scheme of the recovery procedure.

Fig. 2. Algorithm for sampling the boundary of the AdRe. AdRe, admissible region.
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n points of a rectifiable curve γ, with unitary length (The 

algorithm is designed for any length). The central goal of the 

algorithm consists of selecting m points (m < n) such that 

the distance along the curve between 2 consecutive points 

is as close as possible to 1 / (m – 1) (Milani et al. 2004). To 

avoid the calculation of the arc length s, we assume that γ is 

the unit interval [0,1] ⸦ ℝ. We then define it as (Pk)k = 1,…,n the 

set of ordered points in [0,1] with P1 = 0, Pn = 1, and establish 

(Qj)j = 1,…,m, the sequence of ideal equispaced points with:

 1

1      
1j jQ Q h ideal step

m+ − = =
−

 (2)

Considering dk = Pk – Pk–1and δk,j = ｜Qj – Pk｜, note 

that for each Pk there is an ideal point Qj, such that δk,j ≤ 

h/2. In order to discard a point from the set (Pk)k = 1,…,n, we 

established an elimination rule, which seeks to eliminate 

the point such that k
–

 minimizes the following function:

 ( ) { }1
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The process above is applied (n – m) times. In each 

iteration, the values of dk change due to the elimination rule 

of points in the set (Pk)k = 1,…,n given by (3). Finally, we denote 

by (P̂j)j = 1,...,m the subset of points selected along the AdRe 

boundary. We implemented the algorithm described above 

in a Matlab function. Fig. 3 presents the result obtained 

when applying this algorithm in the sampling of the AdRe 

boundary of asteroid (1738) Oosterhoff.

3.2 Internal Sampling of the AdRe

After the sampling of the AdRe boundary, it is necessary 

to sample the internal region. (Milani et al. 2004), and 

(Milani & Gronchi 2009) claim that an optimum method for 

improving this task consists of performing a triangulation 

followed by mesh smoothing. We propose a strategy based 

on the constrained Delaunay triangulation, which operates 

as follows. Given the domain of a polynomial Ɗ̃ ⸦ Ɗ defined 

by the connection with the edges of the sample of boundary 

points (obtained in subsection 3.1) of the AdRe Ɗ, the 

triangulation of the polygonal domain Ɗ̃ is the pair (Π,τ) 

with Π = {P1,...,PN} as the set of nodes of the domain, and τ 

= {T1,...,T2} as the set of triangles Ti, whose vertexes are in Π. 

This triangulation has to fulfill the following conditions:

1. ∪i = 1,k Ti = Ɗ̃.

2.  For each i ≠ j, the set Ti ∩ Tj is empty, or a vertex is 

empty, or a side of the triangle, or one of its edges.

If in addition to the set of points Π, some edges PiPj are 

entered as inputs (for example, the boundary edges of 

Ɗ̃; The input is referred to as a planar straight line graph 

[PSLG]), the triangulation that contains the prescribed 

edges is called a constrained triangulation.

For each triangulation (Π,τ), we can associate the minimum 

angle, which is defined as the minimum between the angles 

of all the triangles Ti. Among other possible triangulations 

of a convex domain, there is a construction called the 

Fig. 3. Sampling of boundary of the AdRe for asteroid (1738) Oosterhoff. The red dot shows the real position of the asteroid obtained from the HORIZONS 
Web-Interface service of NASA's JPL. AdRe, admissible region.

(a) AdRe using exponential metric (b) AdRe sampled at its boundary
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Delaunay triangulation (Bern & Eppstein 1995), which is 

characterized by the following properties: 

ⅰ. It maximizes the minimum angle.

ⅱ. It minimizes the circumscribed circle.

ⅲ.  For each triangle Ti, the internal part of its circumscribed 

circumference does not contain any node of the 

triangulation (Risler 1992).

When they are convex domains, the previous properties 

are equivalent. If the domain is a convex quadrangle whose 

vertexes Π are not on the same circle, there are two possible 

triangulations (Π,τ1), (Π,τ2). According to property (iii), only 

one of this triangulation is a Delaunay triangulation. In 

this case, the Delaunay triangulation is obtained through 

a first triangulation using a technique called edge-flipping 

(Milani & Gronchi 2009). Note that the AdRe domain, Ɗ̃ 

is not generally convex. In this scenario, there is still a 

triangulation that maximizes the minimum angle, known 

as the constrained Delaunay triangulation, but the property 

(iii) is not guaranteed. For each triangle Ti A procedure is 

iterated over the adjacent triangles. If the common edge 

with the adjacent triangle is not Delaunay, the edge-flipping 

technique is applied. This procedure is repeated until all 

edges of the structure in the triangulation are Delaunay 

or are the edges of the boundary Ɗ̃. In each repetition, 

the minimum angle increases, and the triangulation that 

maximizes the minimum angle is obtained at the end 

(Delaunay 1934).

In order to implement the triangulation described in 

the previous paragraphs, we develop an algorithm that 

begins by generating a constrained Delaunay triangulation 

(Π0,τ0) with the boundary points (generated as shown in 

3.1) and the boundary edges. Once the initial triangulation 

is obtained, it is refined by adding internal points to the 

domain, maintaining the Delaunay property at each 

intersection. In each case, a new point is added, which 

extends to the internal part of the discrete density domain 

defined in the boundary point for the quantities:

 
 

min ,j l jl j
P P Pρ

≠
= −

With the corresponding densities

 
3

1

1 ,
3i im

m

G Pρ ρ
=

= ∑

Where Gi corresponds to the barycenters of the triangles 

Ti and the barycenter Gk
– is added as a new point, which 

maximizes the minimum distance (weighted by its density 

ρ̃Gk
–) from the triangulation nodes (Pim, m = 1,...,3, belong 

to the same triangle Ti). Then, the corresponding triangle 

Tk is removed, and the triangles obtained by joining the 

edges of Tk with the new point are added to τ. Consequently, 

the optimum property of the Delaunay triangulation is 

conserved in each insertion.

The flow diagram in Fig. 4 shows the procedure used 

for triangulating the AdRe as a domain, which is generally 

not convex. It begins with a number of points resulting 

from the sampling of the boundary (for example, N = 25), 

out of which the repeated data are removed (the result of 

Fig. 4. Constrained Delaunay triangulation algorithm for sampling inside 
the boundary of AdRe.
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sampling the curves at its points of intersection). Then, 

a first triangulation is performed to identify the triangles 

outside the AdRe. Then, the domain is constrained, and a 

first constrained Delaunay triangulation is performed (the 

outer triangles are removed again).

The following step consists of calculating the barycenters 

of each triangle Ti and with them performing a constrained 

Delaunay triangulation again. This last step is performed 

twice.

The algorithm in question was implemented as a 

MATLAB function. Fig. 5 presents the results obtained 

when applying our algorithm for sampling inside the AdRe 

boundary of asteroid (1738) Oosterhoff.  

3.3 Propagation of Orbits and Ephemeris Region

Once the boundary and the internal region of the AdRe 

are sampled, it is necessary to propagate the established 

points to define the possible orbits that belong to the object 

under study. In fact, this object corresponds to a minor body 

𝔅 that belongs to the solar system and that moves around 

the sun with heliocentric position r, which is observed from 

Earth ε with a radius vector R, known for a given instant 

of time. As is evident, the vector between the Earth and 

the minor body ρ is the unknown that was solved in the 

previous sections. This process gives, as a result, a set of 

possible values (ρ,ρ4 ) for the average time of the observations 

collected from a TSA. Each of these points defines a 

virtual asteroid determined by a set of six quantities of the 

following form:

 , , , , ,X α δ α δ ρ ρ =  


 

That set is known as attributable orbital elements (Milani 

& Gronchi 2009). The following step is consists of replacing 

each point (ρ,ρ4 ) or the node of the triangulation (after going 

back to its original metric) in the state vector expression 

defined by equation (4).

 r = R + ρρ̂
 r4 = R

4

 + ρ4ρ ̂ +  ρ(α4 ρ̂α + δ
4

ρ̂δ) (4)

Where ρ̂ is the unit vector in the direction of observation 

and R, R
4

 is the state vector of the Earth, a parameter that 

is obtained from the collection times of the TSA (Espitia 

Mosquera & Quintero Salazar 2019), with:

ρ ̂ = (cosαcosδ, sinαcosδ, sinδ)

ρ̂α= (–sinαcosδ, cosαcosδ, 0) (5)

ρ̂δ= (–cosαsinδ, –sinαsinδ, cosδ)

As a result of this process, a set of initial state vectors (r,r4) 

in the heliocentric-equatorial system is obtained. We used a 

two-body integrator based on the functions f and g (Danby 

Fig. 5. Results of applying our triangulation algorithm for sampling inside the AdRe boundary for asteroid (1738) Oosterhoff under the exponential metric. 
(a) Selection of points on the boundary. (b) First triangulation and identification of outer triangles. (c) Constraint of the AdRe domain. (d) Removal of triangles 
outside the domain. (e) First computation of barycenters. (f ) Triangulation with the new set of points and subsequent constraint of the boundary. (g) New 
computation of barycenters inside the boundary of the AdRe. (h) Final result of both the boundary sampling process and constrained Delaunay triangulation. 
The red dot in (h) shows the asteroid real position. AdRe, admissible region.

(e) (f) (g) (h)

(a) (b) (c) (d)
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1962; Boulet 1991) to obtain the set of final state vectors 

(rf,r
4

f). In order to simulate the propagation for a few days 

we use this dynamic model because its implementation is 

relatively simple to implement. Fig. 6 presents this set for 

the case of asteroid (1738) Oosterhoff. From this set, we 

calculate the ephemerides, that is, the right ascension and 

declination coordinates for each of the points propagated 

for a specific date after the observation of the object under 

study (ephemerides region).

4. RESULTS

We applied our follow-up strategy to the set of the 

12 asteroids listed in the first column of Table 1, whose 

types are reported in the fourth column (6 NEA, 2 MBA, 1 

Fig. 6. Components of heliocentric position and velocity vectors for asteroid (1738) Oosterhoff. Top row: vectors at the average time of initial observation. Bottom 
row: vectors at the recovery time. The cyan and red dots show the components of the real asteroid.

(d) (e) (f)

(a) (b) (c)

Table 1. Table of sample asteroids recovery. The observatory code, the interval of the initial observations, the orbit type, the Smax value, the proper 
motion, the propagated days interval and the possibility of a recovery are shown

Asteroid MPC code TSA  
(Δt) Type Smax(au) 

Topocen. η(˚/day) Real Pos. ρ 
(au)

Propagation 
aprox. Recovery

(3122) Florence W63 1 h 44 min NEA/PHA 0.0849 9.3920 0.0475 12 d no

(3200) Phaethon W63 2 h 04 min NEA/PHA 0.2157 10.0720 0.0859 11 d 19 h no

2003 GW 608 1 h 31 min NEA/Apollo 1.7344 0.7996 0.9479 10 d 18 h yes

(1864) Daedalus 703 25 min 29 s NEA/Apollo 3.5840 0.3026 1.4658 15 d 20 h yes

2003 BH84 809 1 h 37 min NEA/Apollo 4.4617 0.3498 1.9928 11 d 22 h yes

1977 QQ5 F51 1 h 47 min NEA/Amor 3.3697 0.2664 2.1336 13 d 16 h yes

(1738) Oosterhoff W63 1 h 24 min MBA 1.7940 0.2378 1.0104 15 d yes

(4690) Strasbourg W63 48 min 40 s Hungaria 2.1182 0.2916 1.3425 16 d 23 h yes

(555) Norma W63 1 h 34 min MBA 3.2767 0.1051 2.2395 12 d yes

2006 SO375 705 1 h 23 min Hilda 7.5199 0.1654 2.2756 27 d 20 h yes

2003 GE55 291 59 min 04 s Hilda 8.8767 0.1576 3.3645 47 d 21 h yes

(32811) Apisaon T05 2 h 18 min Jupiter Trojan 6.8280 0.0776 4.3549 18 d 15 h yes

MPC, minor planet center; TSA, too-short arc; NEA, near-Earth asteroid; MBA, main-belt asteroid.
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Hungaria, 2 Hilda, and 1 Jupiter trojan). In order to achieve 

this goal, we use our new web recovery service available at 

http://observatorioenlinea.utp.edu.co/recoveryservice/. 

As input data, we used the observations reported to the 

MPC (https://www.minorplanetcenter.net/db_search) 

by the observatories listed in the second column within 

the intervals of observation presented in the third column 

(in all cases, the interval of observation used constitutes a 

TSA). For minor bodies reported by the W63 observatory, 

they are registries performed by us from the Astronomical 

Observatory of the Technological University of Pereira, 

Colombia (from here on, OAUTP) exclusively for this 

work. The complete tables of data of the observations 

used in this work are available at https://www.utp.edu.co/

observatorioastronomico/astrometria/recovery. 

First, we established the AdRe's for the minor bodies 

under study following the procedure described in Espitia 

Mosquera & Quintero Salazar (2019), using the geocentric 

and topocentric approximations and the exponential and 

logarithmic metrics.

The performed tests showed that for the 12 asteroids 

analyzed, the most adequate version for performing an 

optimum sampling process was the version with topocentric 

correction and based on the exponential metric. This is 

because the topocentric approximation gives, in all cases, 

AdRe's with much simpler shapes than their geocentric 

equivalents, and the exponential metric presents a higher 

density of points around the asteroid’s real position. Figs. 7 

and 8 present the AdRe's computed for the objects under 

study. However, we observed that the logarithmic metric 

describes regions of the AdRe's near the Earth with more 

detail, so it would be useful in the study of near meteoroids 

and artificial satellites. For those readers interested in 

these types of objects, we report the AdRe's obtained 

using logarithmic metrics at https://www.utp.edu.co/

observatorioastronomico/astrometria/recovery.

Regarding the AdRe's calculated under the topocentric 

approximation and under exponential metrics, we applied 

the sampling technique described in section 3. Figs. 9 and 10 

present the results of this process. In all cases, our sampling 

method generated at least one node of the triangulation in the 

proximities of the asteroid’s real position. This indicates that 

at least one of the ephemeris points corresponds to a value 

close to the asteroid’s real position in the celestial sphere.

We transformed each node provided by the triangulation 

into a heliocentric-equatorial state vector (ρ,ρ4 ). Then, 

we performed the calculation of the set of vectors for 

the position and velocity in the heliocentric-equatorial 

system (ri,r
4

i). The graphs of each component for the initial 

times of each asteroid show that the metric that offers 

a cleaner sampling was the exponential one (https://

observatorioastronomico.utp.edu.co/astrometria/recovery.

html). Subsequently, we performed propagation of each 

of these vectors to a date after the observation (column 8, 

Table 1), the date at which the  follow-up of the asteroids 

in question was performed. For that purpose, we used our 

2-body propagation algorithm through functions f and g. 

The propagation of these vectors showed that there are 

deformations of the AdRe’s for the spatial components.

The most significant change occurred for asteroids (3200) 

Phaethon and (3122) Florence, whose input data were 

collected when they were at their points of closest approach 

to the Earth (the real position of the objects within their 

orbit at the moment of their observation is listed in column 

7 of Table 1). The changes in the shape of the AdRe’s, after 

the propagation, become less abrupt when the asteroid is 

farther away from the observer.

Finally, we calculated the ephemerides for each of the 

points obtained from the previous process for observation 

times after the observations listed in column 8 of Table 

1. The recovery times are calculated from the location of 

the OAUTP (W63). Figs. 11 and 12 present the results of 

this process. As a reference, the figures include, indicated 

within the blue dotted-line box, the field of the vision 

given by the instrumental assembly of the OAUTP (95’ × 

72’). Our approach is to slew the telescope near the region 

with the highest density of points, i.e., the region with 

more ephemeris grouped. The asteroid’s real position is 

also included; it was obtained from the HORIZONS Web-

Interface of NASA’s JPL (identified by a red dot; https://

ssd.jpl.nasa.gov/horizons.cgi) and the recovery by Väisälä 

provided by the New Object Ephemerides service of the MPC 

(identified by a blue dot; http://www.minorplanetcenter.

net/iau/MPEph/NewObjEphems.html). We tested our 

methodology by implementing a Laplacian mesh smoothing 

filter. However, as our purpose was to point the telescope 

towards the region of the sky with the highest number of 

points (i.e., ephemeris), the difference when we applied the 

filter did not show a more significant advantage in the results 

shown in Figs. 11 and 12. So we concluded that our method 

eliminates the need for smoothing as proposed by Milani et 

al. (2004), thus increasing the computational efficiency.

As can be observed from Figs. 11 and 12, except for 

asteroids (3122) Florence and (3200) Phaethon, all asteroids 

were recoverable since they presented a higher density of 

possible location coordinates within the visual field of the 

OAUTP and near the asteroids’ real position (red dot). In 

some cases, it is sufficient to recover the object again by 

panning the sky with a telescope that covers three fields of 

vision. Even in the cases of asteroids 2003 BH84 and 2006 

https://www.utp.edu.co/observatorioastronomico/astrometria/recovery
https://www.utp.edu.co/observatorioastronomico/astrometria/recovery
https://observatorioastronomico.utp.edu.co/astrometria/recovery.html
https://ssd.jpl.nasa.gov/horizons.cgi
http://www.minorplanetcenter.net/iau/MPEph/NewObjEphems.html
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SO375, our recovery was better than that provided by the 

New Object Ephemerides service since our triangulated 

ephemerides have a higher density closer to the real 

position than that given by the MPC. In addition, column 

8 of Table 1 shows that the follow-up times range from 10 

days (in the case of asteroid 2003 GW) up to 47 days (for 

the case of asteroid 2003 GE55) after the observations, 

from intervals of observation that do not exceed 3 hours, 

which demonstrates the potential of our follow-up method 

of newly discovered objects. Our method also reduces the 

number of objects that inflate the lists of lost objects, since 

the follow-up strategy would enable locating an object up 

Fig. 7. AdRe's for asteroids (3122) Florence, (3200) Phaethon, 2003 GW, (1864) Daedalus, 2003 BH84 and 1977 QQ5, with topocentric correction using 
the exponential metric. The red dot shows the real position of the asteroid obtained from the HORIZONS Web-Interface service of NASA's JPL.

(a) (3122) Florence t–i (UT) = 2017 09 02.23046

(c) 2003 GW t–i (UT) = 2003 04 04.31379

(e) 2003 BH84 t–i (UT) = 2003 01 25.11890

(b) (3200) Phaethon t–i (UT) = 2017 12 14.17371

(d) (1864) Daedalus t–i (UT) = 2018 03 06.20089

(f) 1977 QQ5 t–i (UT) = 2014 11 26.62712
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to 47 days after their discovery, using an interval of the 

observation of just 3 hours.

In the case of asteroids (3122) Florence and (3200) 

Phaethon, our method was not able to anticipate a recovery 

(last column of Table 1). In fact, the New Object Ephemerides 

service of the MPC was not able to either (see the top 

row of Fig. 11). This was because the input observations 

correspond to one of the moments of closest approach to 

the Earth (in this case, of the order of 10–2 au), and therefore 

their apparent motion was large (column 6 of Table 1). In 

Fig. 8. AdRe's for asteroids (1738) Oosterhoff, (4690) Strasbourg, (555) Norma, 2006 SO375, 2003 GE55 and (32811) Apisaon, with topocentric correction 
using the exponential metric. The red dot shows the real position of the asteroid obtained from the HORIZONS. AdRe, admissible region.

(a)  (1738) Oosterhoff t–i (UT)=2017 09 27.14048 (b) (4690) Strasbourg t–i (UT)=2018 03 11.10067

(c) (555) Norma t–i (UT)=2018 04 17.15633 (d) 2006 SO375 t–i (UT)=2006 09 17.39025

(e) 2003 GE55 t–i (UT)=2002 02 13.27846 (f) (32811) Apisao t–i (UT)=2018 05 13.43080
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the recording of a close pass by the Earth, the gravitational 

field can affect our propagation model based on a two-body 

integrator, so we conclude that in these cases, it is necessary 

to consider the gravity of the Earth as a perturbation in our 

dynamical model.

In order to identify the scope of our method, we repeat 

the follow-up of asteroid 2006 SO375, but now with just two 

input data separated by less than 2 minutes, corresponding 

to the night of their discovery (Table 2). Fig. 13 presents 

the ephemeris region of the asteroid for 28 days after its 

observation. Note how the higher density of possible positions 

of the asteroid provided by our algorithm (black crosses) 

is within the field of the vision given by the instrumental 

assembly of the OAUTP and closer to the real position given 

by the JPL’s HORIZONS Web- Interface (red dot), than the 

recovery provided by the New Object Ephemerides service 

of the MPC (blue dot). This demonstrates the scopes of our 

technique, in addition to its application in the follow-up of 

Fig. 9. Triangulated AdRe's for asteroids (3122) Florence, (3200) Phaethon, 2003 GW, (1864) Daedalus, 2003 BH84 and 1977 QQ5. The red dot 
shows the real position of the asteroid obtained from the HORIZONS Web-Interface service of NASA's JPL. AdRe, admissible region.

(a) (3122) Florence (b) (3200) Phaethon

(c) 2003 GW (d) (1864) Daedalus

(e) 2003 BH84 (f) 1977 QQ5
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recently discovered minor bodies.

5. DISCUSSION AND CONCLUSION

Literature review showed that the AdRe sampling 

technique is an important tool for the study of objects 

(especially with short intervals of observation) that is 

widely applied to space debris. However, despite its 

versatility, we found in our review that the use of AdRe has 

only been applied for the following minor bodies in two 

cases: 2003 BH84 and (60558) Echeclus. In this paper, we 

extend the field of application of the AdRe sampling follow-

up technique by applying it to a group of 12 asteroids: 6 

Fig. 10. Triangulated AdRe's for asteroids (1738) Oosterhoff, (4690) Strasbourg, (555) Norma, 2006 SO375, 2003 GE55 and (32811) 
Apisaon. The red dot shows the real position of the asteroid obtained from the HORIZONS Web-Interface service of NASA's JPL. AdRe, 
admissible region.

(a) (1738) Oosterhoff (b) (4690) Strasbourg

(c) (555) Norma (d) 2006 SO375

(e) 2003 GE55 (f) (32811) Apisaon
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NEAs and 6 MBAs. Regarding the sampling strategy, we 

proposed a technique based on the constrained Delaunay 

triangulation, which does not require the subsequent 

application of a mesh smoother. In addition, we implement 

our follow-up algorithm in a web service under an open-

source license. We constructed the AdRe's for the twelve 

asteroids from the geocentric approximation and, with 

topocentric correction, implementing the logarithmic and 

exponential metrics. 

The results showed that the AdRe's based on topocentric 

Fig. 11. Ephemerides region for final date tf for asteroids (3122) Florence, (3200) Phaethon, 2003 GW, (1864) Daedalus, 2003 BH84 and 1977 QQ5. The blue 
dotted lines box corresponds to the field of vision (95' × 72') given by the OAUTP instrumental assembly.

(a) (3122) Florence t–f (UT) = 2017 09 14.23046       (b) (3200) Phaethon t–f (UT) = 2017 12 25.99749

   (c) 2003 GW t–f (UT) = 2003 04 15.10099         (d) (1864) Daedalus t–f (UT) = 2018 03 22.05026

(e) 2003 BH84 t–f (UT) = 2003 02 06.07308                 (f) 1977 QQ5 t–f (UT) = 2014 12 10.33445
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Fig. 12. Ephemerides region for final date tf for asteroids (1738) Oosterhoff, (4690) Strasbourg, (555) Norma, 2006 SO375, 2003 GE55 and (32811) 
Apisaon. The box comprised of blue dotted lines corresponds to the field of vision (95' × 72') given by the OAUTP instrumental assembly.

(a) (1738) Oosterhoff t–f (UT) = 2017 10 12.14047                      (b) (4690) Strasbourg t–f (UT) = 2018 03 28.06564

(c) (555) Norma t–f (UT) = 2018 04 29.15633   (d) 2006 SO375 t–f (UT) = 2006 10 15.22358

(e) 2003 GE55 t–f (UT) = 2002 04 02.16270   (f) (32811) Apisaon t–f (UT) = 2018 06 01.08888

Table 2. Table of recovery for asteroid 2006 SO375 using an interval of Δt = 1 min 11.712 s. The initial date of observation, the 
recovery final date, the proper motion and the Smax value are shown

Data number TSA (Δt) Initial date (UT) Final date (UT) η (˚/day) Smax (au) Topocentric

2 1 min 44 s 2006 09 17.36278 2006 10 15.22358 0.1420 8.2914

TSA, too-short arc.
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correction and using the exponential metric were better 

adapted to our sampling technique, since they presented a 

greater geometric simplicity and a higher density of possible 

orbits around the asteroids’ real position. In addition, we 

observed that the AdRe's presented common elements 

within each family of asteroids, such that they could be used 

in future work to delimit the possible families to which a 

newly discovered object belongs. 

For the 12 asteroids, we propagated the ephemeris 

region using the field of vision of the OAUTP (W63). We 

observed that 10 out of the 12 asteroids were recoverable, 

with observation times between approximately 25 minutes 

and 2 hours (TSA), and with propagations for follow-up of 

up to 47 days. We even observed how with an interval of 

the observation of just 2 minutes, it was possible to recover 

asteroid 2006 SO375 for approximately 28 days, which 

demonstrates the potential of our triangulation technique. 

The fact that our methodology can perform the follow-up of 

an object, even several weeks after its observation, makes 

it possible for observatories exposed to changing climate 

conditions, as in the case of the OAUTP, to observe the 

object again. This enables gathering more data, which would 

make it possible to construct a preliminary orbit, avoiding 

addition of the object to the list of lost objects. In the case 

of asteroids (3122) Florence and (3200) Phaethon, we could 

not perform the recovery from the observations used as 

input. We concluded that this was due to these objects 

being at the nearest point to Earth within their orbit at the 

moment of observation. As can be observed from Table 1, 

these minor bodies had a position ρ of the order 10–1 au and 

an average motion η much faster than the other asteroids. 

To validate our hypothesis, we simulated observations for 

this same pair of objects but at a distance greater than 1 

au. In this case, our method did allow the follow-up of the 

objects. The follow-up that we obtained for asteroid 2003 

GW (ρ ≌ 1 au) allows us to infer that the closer the object 

under study is from the Earth at the moment of observation, 

the more dispersed will be its ephemeris region (center-

left, Fig. 11). This effect could be due to its proximity to the 

Earth, explained by the gravitational field has a more drastic 

influence, which is why it would be necessary to implement 

a three-body model in this type of case. 

Currently, there are two web services JPL's Scout system 

(https://cneos.jpl.nasa.gov/scout) and NEOScan (https://

newton.spacedys.com/neodys/NEOScan/), which allow 

obtaining ephemeris from short-arcs observation by using 

sophisticated methods. However, both services have a 

common disadvantage which is the fact that they only 

allow calculating ephemeris of existing objects in the 

Near-Earth Object Confirmation Page database (https://

minorplanetcenter.net//iau/NEO/toconfirm_tabular.html). 

In contrast, our services allow obtaining ephemeris from 

the coordinates resulting from the astrometric reduction 

made directly by the observer. In this way, if an observed 

object is suspected of being a discovery, the observer has 

the possibility of planning its future observations using 

our service without the need to wait for the provisional 

pre-registration of the object in the Near-Earth Object 

Confirmation database.
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