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In the general accretion disk model theory, the accretion disk surrounding an astronomical object comprises fluid rings 
obeying Keplerian motion. However, we should consider relativistic and rotational effects as we close in toward the center 
of accretion disk surrounding spinning compact massive objects such as a black hole or a neutron star. In this study, we 
explore the geometry of the inner portion of the accretion disk in the context of Mukhopadhyay’s pseudo-Newtonian potential 
approximation for the full general relativity theory. We found that the shape of the accretion disk “puffs up” or becomes thicker 
and the luminosity of the disk could exceed the Eddington luminosity near the surface of the compact spinning black hole. 
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1. INTRODUCTION 

The inflow of dust and gas into compact objects, such as 

neutron stars and black holes, is known as accretion flow. 

Specifically, as dust and gas flow into these compact objects, 

their temperature rises due to the friction associated with 

viscosity, resulting in black body radiation. This black body 

radiation generates electromagnetic waves leading to the 

illumination of compact objects, which are, by definition, 

non-luminous. Similarly, non-luminous compact objects or 

other weakly illuminating compact objects can be observed. 

The dominant electromagnetic radiation comprises X-rays, 

with the X-ray binary as the most commonly recognized 

example. Thus, to fully understand the observational data of 

non-luminous or weakly illuminating objects, the accretion 

process needs to be studied in detail. In general, among 

main sequence stars, massive stars (core mass M ≃ 3M⊙) 

evolve into black holes, resulting in a strong magnetic field 

as a consequence of collapse. This preserves the magnetic 

flux of the progenitor star, which shrinks during the collapse 

process. The neutron star, which is the endpoint of a 

supernova explosion, is one such example (B ~ 1012 G). This 

indicates that the formation of accretion disk may involve 

an electromagnetic effect in addition to the gravitational 

and hydrodynamic effects. Hence, in addition to gravity, 

the electromagnetic field and hydrodynamics play a major 

role in the accretion process. The black hole magnetosphere 

can be defined in the following manner: inside the surface 

of the magnetosphere, the magnetic pressure is greater 

than the gas pressure, contrary to the outside of the 

magnetosphere surface. In the present work, we explore 

the effect of an electromagnetic field on the accretion flow, 

in addition to the effects of gravity and hydrodynamics. 

The standard model for the accretion disk is the Shakura & 

Sunyaev model (1973), which assumes a thin accretion disk. 

However, as we approach a black hole, Shakura-Sunyaev’s 

thin disk model may fail, as a thorough study of the shape of 

the gravitational potential and the self-radiation pressure of 

an accretion disk reveals a region where the accretion inflow 

exceeds the outflow toward the black hole. Consequently, 

in this region, the accretion disk “puffs up” remarkably 

and deviates from the standard Shakura-Sunyaev model. 

Paczyńsky & Witta (1980) studied this phenomenon for the 

non-rotating black hole case using the pseudo-Newtonian 
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potential for a Schwarzschild black hole. However, in space, 

all compact objects are spinning, including black holes. 

Thus, the original work of Paczynsky and Witta has been 

revised for the case of spinning Kerr black holes that possess 

mass and angular momentum. The pseudo-Newtonian 

potential for the spinning Kerr black hole was developed by 

Mukhopadhyay (2002). In this study, we explore the swollen 

portion of the accretion disk around a spinning Kerr black 

hole by following the approach undertaken by Paczynsky 

and Witta employing Mukhopadhyay’s pseudo-Newtonian 

potential instead of Paczynsky and Witta’s pseudo-

Newtonian potential, which is used for the non-spinning 

Schwarzschild black hole case.

2. METHODS

2.1 Pseudo-Newtonian Potential 

To understand the dynamics around black holes, it 

is essential to employ the general theory of relativity. 

When dealing with a number of objects, rigorous general 

relativistic treatment demands huge computing power and 

is therefore impractical. Hence, in the present work, we 

employ the pseudo-Newtonian potential, which involves 

relativistic effects on the Newtonian gravitational potential. 

For the case of non-spinning black holes, the pseudo-

Newtonian potential is known as the Paczynsky–Witta 

potential, as given by Eq. (1): 

 ( ) 2
GMV r

r GM
= −

−
. (1)

In the case of spinning black holes, the pseudo-Newtonian 

potential for a spinning uncharged Schwarzschild black 

hole, Kerr black hole, charged Reissner–Nordstrom black 

hole, and Kerr–Newman black hole, is known as the 

Mukhopadhyay potential (Mukhopadhyay 2002), as given 

by Eq. (2):
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In this equation, a = 0 or a = 1, where a = 0 corresponds to the 

Paczynsky–Witta potential. 

2.2 Vertical Structure of the Thick Portion of the Accretion 
Disk 

 

Owing to the frictional force resulting from viscosity, the 

differential rotation of layers in the inner portion of the 

accretion disk produces outward radiation. Consequently, 

the gas and dust particles falling into a black hole experience 

outward radiation, which resists the gravitational pull of the 

black hole, leading to swelling of the accretion disk in the 

inner region. As shown in Fig. 1, this bulged portion differs 

substantially from the rest of the accretion disk, which is thin. 

According to Paczynsky and Witta, the pseudo-Newtonian 

potential for a Schwarzschild black hole is given by 

( )
g

GMV r
r r

= −
−

, where rg = 2GM, assuming that the thickness of 

the disk is negligible compared to the radius of the disk. This 

pseudo-Newtonian potential can be safely approximated 

using Eq. (3):

 

 ( ) ( )1/22 2
0 0V r V r z = + 

 
. (3)

 

To make our computation tractable, we introduce R ≡ (r2 

+ z2)1/2, where the effective potential involving the presence 

of centrifugal force is given by Eq. (4): 

 ( ) ( ) 2

0 .eff r
V r V r r r drω

∞
′ ′ 
 ′= − ∫



 (4)

From this, we derive the gravitational acceleration (force 

per unit mass) as .eff effg V= −∇


 We now assume that the thick 

Fig. 1. Profile of the thick accretion disk. 
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portion of the accretion disk is in the equilibrium state to 

maintain its shape. This assumption then demands that the 

surface of the accretion disk be on the equipotential plane, 

which is orthogonal to the direction of gravitational 

acceleration. This can be represented by the following 

equation: 

 2 20 0
00 eff

dV dV
dV d V r dr r dz

dr dz
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From Eq. (5), we obtain Eq. (6). 
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where ( )1/22 2R r z≡ + . 

Using Eq. (6), Eq. (5) can be rewritten as follows:

 ( )2
1 .g

dz r R R r
dr z GM

ω 
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 
 (7)

To solve this differential equation, Eq. (7) is represented 

in a closed form.
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where ω is the angular momentum per unit mass (specific 

angular momentum), and Eq. (8) represents the thickness 

of the bulging part of the accretion disk. For this calculation, 

caution should be exercised as ω may not denote the 

angular frequency for Keplerian motion, unlike the ordinary 

thin accretion disk. Thus, ω may deviate from the simple 

Keplerian angular velocity. Notably, until this point, we have 

considered the case of non-rotating Schwarzschild black 

holes, and our interest is in the case of rotating Kerr black 

holes. The rotating Kerr black hole adaptation of the pseudo-

Newtonian potential was developed by Mukhopadhyay 

(2002). Therefore, in the context of the Mukopadhyay 

pseudo-Newtonian potential, we have 
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By substituting these two equations into Eq. (4), we 

obtain Eq. (10):
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Now, we are able to describe the thick portion of an 

accretion disk around a black hole.  

2.3 Radiation and Luminosity of the Thick Portion of the 
Accretion Disk

According to the Paczynsky–Witta model, in principle, 

the power per unit area, Frad, is given as follows:

 
rad eff

cF g
κ

= , (11)

where geff   denotes the acceleration, c  the speed of 

light, and κ denotes the opacity per unit mass in the CGS 

(Gaussian) unit. Next, for the integration to compute the 

luminosity of the thick portion of an accretion disk, the 

surface element (dσ) is given by Eq. (12): 
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−
   = = +  
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In the cylindrical coordinate system,

 ( )( )
1/22

sec 1 dzd rd dr r d dr
dr

σ θ
   Φ = + Φ 
   

, (13)

where geff = | − ∇Veff |, the vertical acceleration is gz = 

∂V0/∂z, and geff cosθ = gz. In addition, using the expressions 

for Feff and cosθ, Frad is given by Eq. (14): 
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Thus, the luminosity of the thick portion of an accretion 

disk can be represented as follows:

0
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Finally, by substituting dz/dr and ∂V0/∂z into this equation, 

we obtain, 
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Here, LEDD = 4πcGM/κ = 1.3 × 1038 (M/M⊙)erg/s is the 

Eddington luminosity, which is the critical value for the 

luminosity that an astrophysical object with mass M can 

radiate. Thus far, we have considered the case of a non-

rotating Schwarzschild black hole. Similarly, we can derive 

the luminosity for a rotating Kerr black hole, as shown below.
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where Ik can be greater than one.

3. RESULTS 

3.1 Analysis of Luminosity for an Accretion Disk 

The luminosity of the accretion disk is given by Eq. (17). 

The relations amount, X, V0 and r are determined by the 
accretion rate, M , according to the Shakura-Sunyaev model 

(Shakura & Sunyaev 1967), given by EddM M
d
∆





 . In general, 

when the disk is very thin ( d∆ ), the accretion rate is 

considerably lower than the Eddington accretion rate. In the 

present work, we study the thick portion of the disk, where 

the accretion rate could reach Eddington’s critical value. 

Notably, although an astrophysical object with super 

Eddington luminosity will blow up and is very unstable, 

when the accretion flow falls into the central black hole and 

the disk itself is very soft and flexible, it sustains its structure 

even at the super Eddington luminosity.

Therefore, we suggest that the extraordinary luminosity 

of a discovered quasar might be attributable to the “thick” 

and narrow inner part of the accretion disk surrounding the 

supermassive black hole, which excluding strong lensing, is 

the power engine for bright quasars.

3.2 Vertical Structure of the Thick Accretion Disk 

First, we reproduced the results of the work by Paczynsky–

Witta to study the vertical structure of a thin accretion disk 

in the absence of rotation. The vertical structure has already 

been characterized in their work, as in Eq. (18).
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where l denotes the specific angular momentum, which 

can be written as ( )
3/2

0
0 1

Br A r r
r β= −
−

 for numerical analysis. 

Employing Mathematica, we can plot this specific angular 

momentum, as shown in Fig. 2, even though the values for r 

are the same as in the work of Paczynsky–Witta. 

The plots above are essentially the same as those in the 

work of Pazcynsky and Witta. In Figs. 2–4, rt denotes the 

transition radius, which specifies the boundary that 

separates the thin and the thick accretion disk, with 

( ) ( )
3/2 B

0
0

 
1t

rl r A r r
r β= = −
−

. Close inspection reveals that the closer 

the starting point (r0) is to the compact object, the thicker 

the accretion disk becomes, and the more the disk spreads 

out. This allows us to speculate the appearance of accretion 

disk and ultimately to compare it with the theoretical 

computations.

The pseudo-Newtonian potential for a spinning object is 

considerably more complex than that of a non-spinning 

object. Therefore, to investigate the vertical structure of a 

thick accretion disk, we adopted a numerical integration. As a 

result, Fig. 5–Fig. 7 ware obtained. Upon plotting the thick 

portion of the spinning black hole case, the shape of the disk 

evidently becomes steeper, particularly for the case where 

0 3 gr r= , where the disk becomes thinner but wider. That is, 

it is smaller vertically but larger horizontally. We conjecture 

that this can be attributed to the large centrifugal force of a 

black hole or a neutron star.
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4. CONCLUSIONS 

In the present work, we study the shape and luminosity of 

a thick accretion disk in conjunction with the gravitational 

attraction toward the gas and dust inflow. In particular, we 

investigated the innermost part of an accretion disk that 

puffs up (Fig. 8); primarily due to the high radiation pressure 

that resists the accretion inflow in a different manner to that 

for a thin accretion disk (Fig. 9). 

Fig. 5. Accretion disk 1 (r0 = 3 rg) for a Kerr black hole.

Fig. 6. Accretion disk 1 (r0 = 2.3 rg) for a Kerr black hole.

Fig. 7. Accretion disk 1 (r0 = 2.05 rg) for a Kerr black hole.

Fig. 3. Accretion disk 1 (r0 = 2.3 rg) for Schwarzschild black hole, where rt  
denotes the boundary between the thick and the thin disk.

Fig. 4. Accretion disk 1 (r0 = 2.05 rg) for Schwarzschild black hole, where rt 
denotes the boundary between the thick and the thin disk.

Fig. 2. Accretion disk 1 (r0 = 3 rg) for Schwarzschild black hole, where rt  
denotes the boundary between the thick and the thin disk. 
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Briefly, we have followed the methodology first employed 

by Paczynsky and Witta for the case of a non-rotating black 

hole, employing a different pseudo-Newtonian potential, 

which was first suggested by Mukhopadhyay for the 

spinning Kerr black hole case. Owing to the substantially 

more complex spinning structure, we rely on a numerical 

integration strategy. In summary, the structure of the thick 

portion of an accretion disk for a spinning case is wider 

horizontally than in the non-spinning case. This result 

implies that centrifugal force plays a role when a centrally 

compact object rotates. In addition, we can infer that the 

disk could radiate with a super Eddington luminosity. This 

model can therefore be a candidate to explain excessively 

bright quasar observations, such as those listed in Table 1.
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Fig. 8. Conceptual picture of the thick accretion disk. 

Fig. 9. Conceptual picture of the thin accretion disk.

Table 1. List of bright quasars (brighter than their Eddington luminosity), 
where L⊙ is solar luminosity 

Quasars Brightness (Bolometric luminosity)

J043947.08 + 163415.7 (Fan et al. 2019) 5.85 × 1014 L⊙

SDSS J0100 + 2922 (Wu et al. 2015) 4.29 × 1014 L⊙

ULAS J1120 + 0641 (Mortlock et al. 2011) 6.3 × 1013 L⊙

ULAS J1342 + 0928 (Bañados et al. 2018) 4 × 1013 L⊙


