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Determination of Orbital Elements and Ephemerides using the 
Geocentric Laplace’s Method
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This paper presents a methodology for Initial Orbit Determination (IOD) based on a modification of the Laplace’s geocentric 
method. The orbital elements for Near-Earth asteroids (1864) Daedalus, 2003 GW, 2019 JA8, a Hungaria-type asteroid (4690) 
Strasbourg, and the asteroids of the Main Belt (1738) Oosterhoff, (2717) Tellervo, (1568) Aisleen and (2235) Vittore were 
calculated. Input data observations from the Minor Planet Center MPC database and Astronomical Observatory of the 
Technological University of Pereira (OAUTP; MPC code W63) were used. These observations cover observation arcs of less 
than 22 days. The orbital errors, in terms of shape and orientation for the estimated orbits of the asteroids, were calculated. 
The shape error was less than 53 × 10–3 AU, except for the asteroid 2019 JA8. On the other hand, errors in orientation were less 
than 0.1 rad, except for (4690) Strasbourg. Additionally, we estimated ephemerides for all bodies for up to two months. When 
compared with actual ephemerides, the errors found allowed us to conclude that these bodies can be recovered in a field 
of vision of 95’ × 72’ (OAUTP field). This shows that Laplace’s method, though simple, may still be useful in the IOD study, 
especially for observatories that initiate programs of minor bodies observation.
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1. INTRODUCTION 

Progress in the acquisition of astronomical images has 

dramatically increased the available astrometric informa-

tion of minor bodies of the Solar System. The way to calcu-

late orbits in the last decades has changed (Bowell 1999), 

so now it is possible to use all this information. This process 

involves three fundamental stages: an Initial Orbit Determi-

nation (IOD) (Marsden 1985), a least squares fitting (Vallado 

& McClain 2001) and quality control (Milani et al. 2008). 

Additionally, there are challenges raised by the appearance 

of digital astrometry. Finding a solution to this problem is 

of great importance for humanity, in order to discover and 

characterize, in the least amount of time, minor bodies that 

imply an imminent risk of collision with the Earth (Aristova 

et al. 2018).

The pioneers to offer a solution to the problem of IOD 

were Laplace (Curtis 2014) and Gauss (Gauss 1809; Gauss 

& Davis 2004; Hwang 2009); however, these methods were 

conceived just over two centuries ago. Because the acqui-

sition of an astronomical image took a great deal of time, 

these classical methods were elaborated for that context. 

At present, a large amount of data can be obtained on an 

observation night, so these methods must be reconsidered 

(Klokacheva 1991; Sokolskaya 1997) or replaced by alternate 

ones. For that purpose, comprehensive reviews of the Gauss 

& Laplace methods have been performed (Milani et al. 2008; 

Mirtorabi 2014), or completely alternative methods have 

been investigated, to calculate a finite set of preliminary 

orbits for solar system bodies, using the two-body integrals 

(Gronchi 2004; Gronchi et al. 2010).

These methods are adjusted more adequately to the large 

amount of astrometric information currently available; 

namely, they use all possible data (unlike the Gauss method 

that uses just three (Danby 1962). The use of all possible 

data permits astronomers to perform a good initial orbit es-
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timation for the celestial body, even when the observational 

data covers a very short section of the orbit, that is VSA (a 

very short arc). This definition is used when the sequence of 

observations belongs to the same object, or if it can be ad-

justed to a smooth curve (usually a low-degree polynomial 

Milani et al. 2005).

On the other hand, in studies such as Quijano et al. 

(2010), orbital elements of the asteroid 2003QO104 were 

determined using, principally, a linear interpolation by 

Lagrange method. However, this methodology does not 

calculate the temporal derivatives of both coordinates. In 

other words, an attributable is not computed, and therefore 

it is not possible to determine either the geodesic curvature 

or the proper motion, which are essential constants for the 

development of the method. The term attributable was first 

introduced by Milani et al. (2001) in order to use it to find 

identifications of asteroids with known orbits, such identifi-

cation is called attribution. This definition is very important 

at the present time in the development of methods for 

orbital determination, for example, methods developed by 

(Klokacheva 1991; Sokolskaya 1997) do not use this type of 

approach. 

As mentioned earlier, due to a large number of observa-

tions available, it is necessary to resort to new methods that 

allow the monitoring of minor bodies of the Solar System. 

For this purpose, modern methods can be used based on 

the invariants of the motion (Villarraga & Quintero-Salazar 

2016) or those that estimate the admissible region in which 

minor bodies can be found (Milani et al. 2004; Mosquera & 

Salazar 2019).

However, to give a more straightforward solution when 

there are VSA observations, it is possible to resort to vari-

ations of classical methods, such as Laplace (Milani et al. 

2008). In this method, computational implementation is 

simpler compared to modern methods. Through this meth-

od, it is possible to know the orbital parameters of minor 

bodies. This latter is especially important to observatories 

that are initiating minor bodies observation programs.

Therefore, the purpose of this paper is to discuss a mod-

ification of the geocentric Laplace's method that allows for 

the use of all available astrometric data of the body in ques-

tion. Moreover, we show how from this data it is possible to 

calculate the geodesic curvature value of the trajectory and 

how we use it to find the topocentric distance. Subsequent-

ly, we proceed to find the initial values for the problem of 

the two bodies, to determine the orbital parameters that 

describe the trajectory of the object.

Finally, the ephemerides for the subsequent re-observa-

tion of the minor bodies under study are estimated. Input 

data, OAUTP observations [MPC code W63 (Villarraga et al. 

2017)], among others, available in the MPC database were 

used. To validate the results, we made a comparison with 

the NASA JPL Web-Interface service, both for orbital param-

eters (obtaining orbital errors for shape and orientation), 

and for the estimated ephemerides (when determining if 

the object is recoverable or not from a field of vision of 95’ × 

72’).

This article is structured as follows: first, the methodology 

used in this study to recover minor bodies is described in 

detail. Next, the proposed methodology is validated by com-

paring the obtained results with those available in the NASA 

JPL Web-interface service. Finally, the main conclusions 

are presented, in which the reliability of the modification 

of the geocentric Laplace's method, by recovering minor 

bodies from the Solar System is demonstrated. This is useful 

even when the input data observations represent short time 

intervals.

2. MATERIALS AND METHODS

In this section, a modification of the geocentric Laplace's 

method to estimate a preliminary orbit is presented. The 

flowchart that illustrates this process is shown in Fig. 1.

Initially, a minor body  B , belonging to the Solar System 

that moves around the Sun with heliocentric position r is 

considered. This is observed from Earth 𝓔 which has a vec-

tor radius R, known for a determined moment of certain 

time (Fig. 2). The central idea is to find the state vector that 

describes this trajectory. To achieve this, a least squares fit-

ting to the registered observations is made, and from this, 

an attributable is obtained. In the next stage, using the same 

fitting, the state vector of the Earth was estimated.

Furthermore, the methodology involves the calculation 

of the proper motion, the orthonormal base adapted to the 

apparent movement of B  on the celestial sphere, and the 

constants of the geodesic curvature and along-track acceler-

ation. Then, the dynamic and geometric equations were ap-

plied to find two additional constants that completed the set 

of constants necessary to estimate the magnitude of the he-

liocentric position of   B . Ultimately, we made a selection of 

the allowable solutions to find the state vector; with this, it 

was possible to estimate both the orbital elements and eph-

emerides. In the following section, methodology is ex-

plained in detail.

2.1 Computing Attributable

One of the input parameters of the algorithm is the set of 

astrometric data obtained from different observation nights 
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Fig. 1. Flowchart of the developed algorithm for Initial Orbit Determination (IOD) using the modification of the geocentric Laplace's method.
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(Fig. 1, Block 1). Generally these data are expressed as fol-

lows:

 ( ,  ,  )     1,  ...,  i i it i mα δ =  (1)

Where t is the observation time, α the right ascension, δ 

the declination, where m ≥ 3 is the total number of regis-

tered observations.

Then, a polynomial model fitting was performed for an 

average time t  from the ti (Milani & Gronchi 2010), of the 

form: 

 ( ) ( ) ( )( ) ( )( )21
2

t t t t t t t tξ ξ ξ ξ= + − + −  (2)

Where ξ represents the fitting for α and δ, respectively. From 

these quantities, the attributable vector ( ), , , , ,A α α α δ δ δ= 







  

which is associated with a covariance matrix that yields an 

estimate of errors (Milani et al. 2001; Fig. 1, Block 2), was 

calculated.

At this point, the information contained in the attribut-

able A does not include either the value of the topocentric 

distance ρ or the radial velocity ρ∙  of the body under study. 

Then, the next step consists in finding the value of such 

quantities that allow resolving the IOD, determining the 

orbital elements of a minor body from angular information 

only.

2.2 Poincaré Interpolation

The next step is to estimate the state vector of the 

Earth ( ) R, R , that is, the heliocentric position of the center 

of the Earth (Fig. 1, Block 3). In order to obtain more precise 

results, Poincaré (Poincaré 1906; Milani et al. 2008) suggest-

ed that these quantities should be calculated consistently 

with the same interpolation used to calculate the attribut-

able vector and not using exact formulas. Therefore, the po-

sition of the Earth for ti was estimated, and finally, (R, R)
was estimated using the eq. (2). In this case, a geocentric 

approach was implemented (Milani et al. 2007; Curtis 2014). 

2.3 Computing Proper Motion

Both the position and heliocentric velocity of  B are given 
by:

 ˆr R ρρ= +  ˆr R ρρ= + +

 

ˆαραρ ˆ+ 

δρδρ  (3)

Where 
ˆˆα
ρρ
α
∂

=
∂

 and 
ˆˆ ∂

=
∂δ
ρρ
δ

.

Being:

 ( )ˆ ,cos cos ,  sin cos ,  sinρ α δ α δ δ=

 ( )ˆ ,sin cos ,  cos cos ,  0αρ α δ α δ= −

 ( )ˆ cos  sin ,  sin sin ,  cos= − −δρ α δ α δ δ

In the previous set of equations, it is proven that: ˆ ⋅ρ ˆ =αρ
ˆ ⋅ρ ˆ =δρ ˆ ⋅αρ ˆ 0=δρ . ˆ ˆ1,  cosˆ = = =αδ δρ ρρ . The next 

step of the method is to compute these vectors (Fig. 1, Block 

4). Laplace's method is a technique used to approximate the 

values of ρ and ρ∙ , so that eq. (3) can be determined. Being 

the topocentric position of =ρ ρ ρ̂  of 𝕭, topocentric velocity 

is giving by:

  
ˆˆ   d d

dt dt
= +

ρ ρρρ ρ  (4)

Using an orthonormal base adapted to the apparent tra-

jectory of 𝕭 in the celestial sphere, that is, the image of 

( )ˆ tρ  it follows that (Danby 1962; Milani & Gronchi 2010):

  ˆ  
ˆ

 
ˆd d dsv v

dt ds dt
ρ ρ η= = =  (5)

Where s is arc length parameter.

Then, proper motion v=η was established. Its value is 

one of the most important quantities that was estimated us-

ing the modification of the geocentric Laplace's method 

(Fig. 1, Block 5):

 2 2 2cosˆ   d
dt

= = + 

ρη α δ δ  (6)

Fig. 2. Asteroid movement around the Sun and observed from Earth.
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Likewise, the unit vector v̂  was set, so that:

 
ˆˆ   =

'
ds dv
dt ds

=
ρη  (7)

2.4 Computing vectors based on the Attributable

Now, ρ̂  has unit magnitude and 
ˆd

ds
ρ

is a perpendicular 

vector to ρ̂ , so that v̂ ⋅ ˆ 0=ρ . This allows to define a three- 
dimensional basis if the following vector is added: 

 ˆ ˆn = ρ ˆ v×  (8)

The mathematical notation of the derivative with respect 

to s is established as prime; and according to the above rela-

tionships, the next properties are satisfied:

 'ˆ ˆv ⋅ =ρ ( )ˆˆd v
ds

⋅ ρ ˆˆ 1v ′− ⋅ = −ρ  
  (9)

 
2' 1ˆ 0

2
ˆ ˆ

dv v vds
⋅ = =

Now, the next derivatives are introduced:

 ( )3

1 1 ,   ′ = = −′′   α α α αη αη
η η

 ( )3

1 1 ,  ′ = = −′′  



δ δ δ δη δη
η η

From the second expression in (7), and considering the 

previous derivatives for the unit vector  v̂ , it follows:

  
ˆ

v̂ ′ ∂=
∂
ρα
α

ˆ
+ ′ ∂

∂
ρδ
δ

( )ˆ1 ˆ= + 

α δαρ δρ
η

 (10)

To unit vector  n̂ , the previous expression is replaced in 
(8), then, the following expression was obtained:

  (11)

 
ˆcos

o  
ˆ

c s
ˆn = −

′
=′

δ α

δα δρ ρ
δ c

1
o

ˆ
s

ˆcos  
 

− 
 





δ α

δα δρ ρ
η δ  

Since eqs. (10) and (11) are in terms of attributable val-

ues, the next step is to calculate these values (Fig. 1, Block 

6).

2.5 Computing the geodesic Curvature and Along-Track 
Acceleration

According to the properties of (9) vector v̂' can be ex-
pressed as:

 ' ˆ ˆˆ   v n= − +ρ κ  (12)

The scalar quantity denoted by  κ , is the geodesic curva-
ture, which measures the deviation of the path of a great 

circle (a geodesic on the sphere). This value is unknown and 

hence is one of quantities to be resolved.

From the eq. (5) the derivative with respect to time is 

obtained, and then, replaced into (12), so that:

 ( )
2

2
2

ˆ ˆˆ ˆd v n
dt

= + − +

ρ η η ρ κ  (13)

In this equation, there is one additional scalar quantity  η , 
which was estimated from the attributable as showed latter. 

To find this scalar quantity the following relationships are 

considered:

 ( )cos cos , cos sin ,ˆ 0 ,= − −ααρ δ α δ α
 

 ( )sin sin , sin cos ,ˆ 0 ,= − −αδρ δ α δ α

 ( )cos cos , cos sin s nˆ , i= − − −δδρ δ α δ α δ

Where ( )ˆˆ / , = ∂ ∂αα αρ ρ α ( )ˆ ˆ / ,= ∂ ∂αδ δρ αρ ˆ =δδρ ( )/ˆ∂ ∂αρ δ , 

and also the following properties are established:

 ˆ ˆ⋅ =αα αρ ρ ˆ ˆ⋅ =δδ αρ ρ ˆ ˆ⋅ =αδ δρ ρ ˆˆ 0⋅ =δδ δρ ρ
  (14)

 ˆ ⋅αδρ ˆ sin cos= =αρ δ δ ˆ ⋅ααρ ˆ sin cos=δρ δ δ

In order to find  κ , scalar product with n̂  is calculated to 
both sides of eq. (12):

 ' ˆv̂ n= ⋅κ  (15)

Then eq. (10) is derived with respect to s. Simplifying it 

yields:

 ( )' ˆˆ ˆv ′′= + +′′
α δα ρ δ ρ 2 ˆ( ′ +ααα ρ ˆ2 ′ ′ +αδα δ ρ 2 ˆ )′

δδδ ρ

Finally, the previous expression is substituted into (15) 

and, making the necessary simplifications and substitutions 

involving (14), an expression for κ  is obtained:

 

 ( ) ( )2 2
3

1 cos sin = + + + 




 

 κ δ αδ δα α δ δ η
η

 (16)

Therefore, from eq. (16), it was possible to compute 

the geodesic curvature based on the variables of the at-

tributable, which is, as previously mentioned, one of the 
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quantities to be estimated in this method (Fig. 1, Block 7). 

Otherwise, to find the value of  η , the scalar product on both 

sides of the eq. (13) with v̂  was performed. Thus we have:

 

 
2

2

ˆ ˆd v
dt

= ⋅

ρη  (17)

Finally, using both eqs. (17) and (6), the value for along-

track acceleration was obtained:

 ( )2 21 cos cos sin= − + 

  



η αα δ α δ δ δ δδ
η

 (18)

Then, we proceeded to estimate this value numerically 

(Fig. 1, Block 8).

2.6 Computing Constants through Dynamical and geometric 
Equations

By replacing (5) into eq. (4), the next expression is ob-

tained:

 ˆˆ= + ρ ρρ ρην

Deriving this expression again with respect to time and 

using (12), yields:

 ( ) ( )2 2ˆ2 ˆˆ v n= − + + +  ρ ρ ρη ρ ρη ρη ρη κ  (19)

The two-body dynamic model was assumed in order to 

obtain preliminary orbits. In this model, the minor body is 

only affected gravitationally by the Sun; and therefore, no 

other external force alters its trajectory. Using Newton's Law 

of gravitation, the heliocentric accelerations of the Earth 

and the studied body are obtained, respectively, as:

 
3 3

,  R R r r
R r

= − = −



µ µ
 (20)

From eq. (3) it is know that:

 
3 3 3

1 1  r R R
R r r

 
= − = − − 

 




µρ µ ρ  (21)

A scalar product with ˆ  v in both eqs. (21) and (19) was 
performed. The result was equalized, and then the terms 

were organized as follows:

 ( )3 3

1 1 ˆ2  R v
R r

 
+ = − ⋅ 

 
 ρη ρη µ  (22)

This equation shows that if the values of ρ  and r  are 

known, the values for velocity ρ  can be found. Then, a sca-

lar product with n̂  on both eq. (21) and (19) is performed, 
this yields:

 ( )2
3 3

1  ˆ1 R n
R r

 
= − ⋅ 

 
ρη κ µ  (23)

This expression is organized, and the result is multiplied 

on both sides by R3, so it is reduced to:

 
3

3
1  RC

R r
= −

ρ
 (24)

Where 

 ( )
2 3

 
ˆ ˆ
RC

R n
=

⋅

η κ
µ  

Eq. (24) is known in literature as dynamical equation 

(Milani & Gronchi 2010).

2.7 Computing the Magnitude of the Heliocentric Position

At this point we proceeded to perform the numerical esti-

mation of the variables of interest ,  ,  ,  r r ρ ρ . In principle, 

there is a geometric relationship between R, r, and ρ  called 

the geometric equation (Danby 1962):

 2 2 2 2 cosr R R= + +ρ ρ ε  (25)

Where ˆcos ˆ R= ⋅ε ρ . Up to this point, the constant C and 
cos ε are determined numerically (Fig. 1, Block 9) since the 

variables on which they depend are known quantities. 

From eq. (24), then:

  (26)

 

2 3 6
2

2 3 6

21  R R R
C r r

ρ
 

= − +  
   

By replacing the previous expression into (25) and multi-

plying it by C2r6, the following expression is obtained:

 ( ) ( )
( )

2 8 2 6 2

5 3 8

2 cos 1
             2 1 cos 0    
P r C r R r C C

R r C R
= − + +

+ + − =

ε
ε

 (27)

The above expression is a polynomial equation of the 8th 

degree in r. By solving it, the value of r is found (Fig. 1; Block 

10).
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2.8 Determination of State vector, Orbital Elements and 
Ephemerides

In order to find a preliminary orbit and subsequently 

propagate ephemerides, the following Matlab functions 

were implemented:

•	  Solutions for r that were either imaginary or negative 

were filtered, as well as the trivial solution r = R (Milani 

et al. 2008; Fig. 1, Block 11).

•	  Eq. (25) for ρ with each filtered value of r was solved 

(Fig. 1, Block 12). Then, the invalid solutions for ρ were 

filtered (Fig. 1, Block 13).

•	  By using the eq. (22), the corresponding value for radial 

velocity was obtained ρ  (Fig. 1, Block 14).
•	  Using the already-known magnitudes, the state vector 

(3) was determined (Fig. 1, Block 15).

•	  The orbit to generate ephemerides using the f and g 

series was propagated (Danby 1962; Fig. 1, Block 16).

•	  The correction for aberration was applied (Fig. 1, Blocks 

16 to 18); then, the state vector was converted to orbital 

elements.

•	  Finally, the orbital elements and the ephemerides of 

the minor body were obtained (Fig. 1, Block 19).

2.9 Analysis of Errors

One way to carry out the error analysis is to compare all 

the estimated orbital parameters with the nominal ones; 

however, this is quite difficult (Schaeperkoetter 2011). An 

alternative is to reduce the number of parameters to be 

compared, considering that in any orbit the orbital param-

eters can be grouped into two groups, some associated 

with shape and others associated with orientation. The first 

contains information regarding the orbit shape on orbit 

plane: the semi major axis and eccentricity (a, e), while the 

second group contains information in respect to the relative 

orbit orientation: inclination, longitude of ascending node, 

and argument of perigee (i, Ω, ω). These error parameters 

are referred to as error in shape d, and orbit orientation 

Φ, respectively. This technique consists in reducing the 

number of parameters to be compared from 5 to 2 (Mortari 

et al. 2006). This technique has the advantage of making the 

graphical interpretation of the error easier, using a polar 

representation. In our case, the latter method is useful 

because we are using several sample asteroids, and with this 

analysis, it is possible to get a more global idea of the results 

of the method.

If the nominal parameters are ( ),  ,  ,  ,  ,  a e i Ω ω θ  and the 

estimates are ( )* * * * * *,  ,  ,  ,  ,  a e i Ω ω θ , where θ is true anom-

aly, the error in the shape d is calculated as:

 ( ) ( )2 2* *  d a a b b= − + −  (28)

Where 21  b a e= − is the minor semi-axis. Orbit shape is 

related with the major and minor semi-axis which are di-

mensionally consistent parameters. Using both parameters 

the orbit shape can be represented as a point in the a b−  

plane. Therefore, the orbit error shape can be simply de-

scribed by the eq. (28).

For orbit orientation, error Φ is calculated as:

 [ ]( )1cos 1*2
Ttr CCΦ = −  (29)

Where

 ( ) ( ) ( )3 1 3
ˆˆ     ˆ       ˆ  

T
C R R i R r h r h = + Ω = × ω θ  (30)

Being R1 and R3 the rotation matrices around the first and 

third coordinate axis, respectively. Mathematically, angle Φ 

is the main angle of corrective matrix between matrices C
C and C*. This can be interpreted as the angle between the 

directions of the estimated angular momentum and the real 

one; if this angle is small, the estimated orbit resembles the 

real one in terms of its position and orientation in three-di-

mensional space.

In the description of an orbit error, there are two parts: an 

error in the orientation Φ, which is an angle, and another in 

the position d, which is a distance. Hence, a polar represen-

tation is used to describe the error of the orbit through the 

point (Mortari et al. 2006):

 iE de Φ=  (31)

In this representation, the error will be smaller, the closer 

the point is to the origin of coordinates, and smaller the 

angle of inclination for the positive x-axis. 

3. RESULTS

The developed algorithms were implemented as Matlab 

functions. The set of asteroids listed in Table 1 was used to 

validate the proposed methodology. As input data, obser-

vations reported to MPC (https://www.minorplanetcenter.

net/db_search) and by OAUTP (MPC code W63) were used. 

Because of in the OAUTP we carry out observation pro-

grams in minor bodies, we decided to test our methodology 

with both NEA and MBA asteroids. From these asteroids, 

we had already made observation reports, and we comple-
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mented with those recorded by other observatories. These 

observations cover the observation intervals shown in the 

second column of Table 1 (in all cases, the observational 

interval used is a VSA). In the web site (https://www.utp.

edu.co/observatorioastronomico/astrometria/orbital-ele-

ments-and-recovery-using-laplace), full data tables of the 

observations used in this study are available.

The Poincaré interpolation and the calculation of the attrib-

utable vector were performed to apply the modification of the 

geocentric Laplace's method. This process resulted in a state 

vector that was used to determine orbital elements of each of 

the studied asteroids. The results are shown in Table 2.

Otherwise, Fig. 3 shows the orbits in the heliocentric 

ecliptic system, as well as its projections on the axes of the 

NEA asteroids and Hungarian-type asteroid. Fig. 4 shows 

the same for MBA-type asteroids. The animations of the 

trajectories obtained in this study are available at https://

www.utp.edu.co/observatorioastronomico/astrometria/

orbital-elements-and-recovery-using-laplace.

To analyze the obtained results, the errors in shape and 

orientation of the orbits for the set of 8 asteroids were esti-

mated. The orbital elements data taken from the NASA JPL 

Web-interface service (https://ssd.jpl.nasa.gov/horizons.

cgi#results) were assumed to be true. The results are shown 

graphically in Fig. 5.

As can be seen, the errors in shape are less than 53 × 10–3 

AU, except for the 2019 JA8 asteroid (Fig. 5a). These results 

are comparable with the real model of the orbits, which is 

intrinsically linked to the use of a two-body model (Gronchi 

et al. 2010). The error orientation Φ is less than 0.1 rad, ex-

cept for the (4690) Strasbourg (Fig. 5b). 

The errors in each of the estimated orbits in a polar rep-

resentation are shown in Fig. 6. It is observed that the orbits 

are of good quality even when the dynamic model used 

only considers two bodies. Fig. 6a illustrates the object that 

shows the highest estimated orbital error is 2019 JA8. This 

may be because this asteroid was at an average distance 

from the observer of less than 0.35 AU, with a significant 

proper motion (Table 1). Under such conditions, Laplace's 

method should consider the position of the observer on 

Table 1. Samples of the asteroid recovery. The number of input data N, interval of the initial observations Δt, the orbit type, the proper motion η, and the  
ρ value are shown.

Asteroid N VSA (Δt) Type η (°/day) Real Pos. ρ (au)

(1864) Daedalus 16 22d 3h 25m NEA/Apollo 0.3147 2.2636

2003 GW 13 18d 3h 40m NEA/Apollo 0.7663 0.8677

(4690) Strasbourg 19 7d 4h 28m Hungaria 0.2986 1.3899

2019 JA8 25 19d 1h 20m NEA/Amor 0.3836 0.3255

(1738) Oosterhoff 33 17d 16h 00m MBA 0.3107 1.0874

(2717) Tellervo 23 16d 2h 56m MBA 0.2106 1.6472

(1568) Aisleen 16 20d 7h 46m MBA 0.2825 1.5659

(2235) Vittore 24 11d 22h 34m MBA 0.0778 3.0932

Table 2. Orbital elements: Semimajor axis (a), eccentricity (e), inclination (i), the argument of perihelion (Ω), ascending node (ω), time of perihelion 
passage (T0) obtained for this study (TS) compared with the nominal ones taken from NASA JPL Web-interface service (JPL) at time of reference tref 

Asteroid tref(JD) Data
Orbital elements

a (AU) e i (°) Ω (°) ω (°) T0 (JD)

(1864) Daedalus 2458789.80310 TS 1.4639 0.6098 22.7320 7.2799 325.2213 2458603.39671

JPL 1.4610 0.6144 22.2092 6.6280 325.6275 2458604.12044

2003 GW 2458354.55596 TS 1.8647 0.4848 48.3890 183.4034 91.8637 2458254.98649

JPL 1.8207 0.4762 49.4358 183.2111 90.6109 2458253.92435

(4690) Strasbourg 2458188.03505 TS 1.9536 0.0862 17.1201 298.1088 115.1864 2458016.23371

JPL 1.9374 0.1089 16.9095 295.7938 105.4774 2457993.92200

2019 JA8 2458627.44160 TS 2.6154 0.5296 10.1768 74.7833 202.4851 2458580.45560

JPL 2.4197 0.4965 9.5019 79.2309 197.7623 2458673.81805

(1738) Oosterhoff 2458032.92310 TS 2.1628 0.1945 5.5060 37.9928 294.1069 2458019.14392

JPL 2.1835 0.2025 4.8774 44.1111 284.4315 2458011.86828

(2717) Tellervo 2458184.20493 TS 2.2555 0.2810 2.7606 162.0936 159.6214 2457782.89620

JPL 2.2146 0.2185 3.2854 164.8653 163.5006 2458627.03995

(1568) Aisleen 2457434.87988 TS 2.3667 0.2735 24.9534 144.2715 227.5491 2457182.98599

JPL 2.3517 0.2541 24.8966 146.2405 228.7325 2457187.56159

(2235) Vittore 2458675.39060 TS 3.2352 0.2160 18.0316 206.3595 269.6413 2457857.97201

JPL 3.2043 0.2149 18.7807 205.0291 274.4220 2459510.61840

https://www.utp.edu.co/observatorioastronomico/astrometria/orbital-elements-and-recovery-using-laplace
https://www.utp.edu.co/observatorioastronomico/astrometria/orbital-elements-and-recovery-using-laplace
https://www.utp.edu.co/observatorioastronomico/astrometria/orbital-elements-and-recovery-using-laplace
https://www.utp.edu.co/observatorioastronomico/astrometria/orbital-elements-and-recovery-using-laplace
https://www.utp.edu.co/observatorioastronomico/astrometria/orbital-elements-and-recovery-using-laplace
https://www.utp.edu.co/observatorioastronomico/astrometria/orbital-elements-and-recovery-using-laplace
https://ssd.jpl.nasa.gov/horizons.cgi#results
https://ssd.jpl.nasa.gov/horizons.cgi#results
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Fig. 3. Orbits of the NEA and Hungaria-type asteroids. Plots are in a 
heliocentric ecliptic system.

Fig. 4. Orbits of the MBA-type asteroids. Plots are in a heliocentric ecliptic 
system.
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Earth (which implies the reformulation of the entire math-

ematical model). Additionally, due to the proximity of the 

asteroid to the Earth, the gravitational force influence of 

the planet should be considered when calculating. That is, 

a three-body model should be implemented. On the other 

hand, in thcase of (4690) Strasbourg, the orientation error 

was greater than the other asteroids. This may be because this 

one was tested with a shorter time interval. However, as we 

clarified in section 2.9, seeing the error in a polar representa-

tion is important. Despite the aforementioned challenges, the 

estimated orbit for both 2019 JA8 and (4690) Strasbourg are of 

enough quality to recover this object again.

Fig. 5. Estimated orbital errors for each asteroid: (a) The error in shape, and (b) the error in orientation.

Fig. 6. Orbit error complex representation for the asteroids. (a) All used asteroids, and (b) Zooming into the plot.
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In the rest of the cases, when zooming into the plot (Fig. 

6b), the errors get close enough to the origin, and with 

minimal angles (the latter also for 2019 JA8). In this way, it is 

observed that the estimated orbits were of good quality. 

However, despite the proximity between the estimated 

orbital parameters in respect to the real ones, the effective 

utility for the IOD method is determined by the capacity it 

has to produce ephemerides with enough precision so that 

the body can be re observed after initial observations. The 

purpose of our algorithm is to establish an IOD with the 

available information of the object. The IOD allows for the 

establishment of an ephemeris to perform the recovery of 

that object. This recovery allows for the gathering of a great 

number of observations. The more observations, the better 

the estimation of the orbit, which is the least-squares princi-

ple procedure input (Danby 1962). In our case, we tested the 

recovery simulation, calculating the ephemeris for 15, 30, 45, 

and 60 days after the last observation for each of the asteroids 

presented in Table 3. As it is evident in Table 3, it was possible 

to recover all the objects. The results are compared to those 

Table 3. Ephemerides for sample asteroids. Date shows time in UT for the ephemerides at 15, 30, 45 and 
60 days after the last observation entered as input. The symbols α and δ refer to the coordinates in right 
ascension and declination, respectively.

Ephemerides

Date
(UT)

a
(h min s)

δ
(o ʹ ʺ)

Δa
(arcmin)

Δδ
(arcmin)

(1864) Daedalus

2019 11 29.1372 11 29 19.46 +24 03 50.6 1.63 1.87

2019 12 14.1372 11 39 42.23 +24 24 10.7 2.27 3.12

2019 12 29.1372 11 43 39.15 +25 34 09.7 2.40 4.56

2020 01 13.1372 11 39 13.40 +27 34 27.9 2.38 6.00

2003 GW

2018 09 19.3861 03 09 34.33 -10 53 17.3 4.80 7.79

2018 10 04.3861 02 51 16.90 -23 27 08.0 5.17 17.47

2018 10 19.3861 02 25 45.95 -32 20 50.9 0.84 26.34

2018 11 03.3861 02 00 56.36 -36 52 18.7 5.87 31.44

(4690) Strasbourg

2018 03 28.0838 06 37 27.64 +17 52 40.5 0.94 0.77

2018 04 12.0838 07 00 57.52 +16 12 08.3 3.65 2.00

2018 04 27.0838 07 26 41.13 +14 28 04.4 7.56 3.75

2018 05 12.0838 07 53 50.96 +12 34 22.5 12.78 6.04

2019 JA8

2019 06 18.1566 14 57 35.73 –16 02 15.6 4.77 6.41

2019 07 03.1566 15 14 59.64 –27 08 31.8 13.06 12.65

2019 07 18.1566 15 53 29.46 –37 30 02.9 28.06 14.11

2019 08 02.1566 16 52 45.23 –44 36 15.7 41.94 6.93

(1738) Oosterhoff

2017 10 29.1566 21 17 11.76 –21 27 46.9 2.51 0.06

2017 11 13.1566 21 43 17.56 –18 22 44.3 2.32 0.43

2017 11 28.1566 22 11 25.77 –15 00 19.6 1.11 1.33

2017 12 13.1566 22 40 45.36 –11 23 57.0 1.14 2.74

(2717) Tellervo 

2018 03 28.2334 12 16 57.64 +00 12 15.5 0.36 0.14

2018 04 12.2334 12 02 47.46 +02 01 06.7 1.91 1.79

2018 04 27.2334 11 52 01.91 +03 21 53.1 6.84 4.80

2018 05 12.2334 11 46 49.88 +04 01 15.8 13.37 8.52

(1568) Aisleen

2016 03 13.3917 06 24 28.28 +09 36 12.1 5.35 1.32

2016 03 28.3917 06 38 35.71 +12 19 33.9 10.13 2.11

2016 04 12.3917 06 56 15.66 +14 22 50.3 15.59 2.53

2016 04 27.3917 07 16 28.30 +15 49 38.4 21.69 2.39

(2235) Vittore

2019 07 31.1324 21 58 00.58 +10 00 38.6 0.19 0.17

2019 08 15.1324 21 48 36.92 +09 13 54.7 0.68 0.10

2019 08 30.1324 21 38 40.39 +07 53 32.2 1.45 0.06

2019 09 14.1324 21 30 03.36 +06 10 31.5 2.39 0.43
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provided in the NASA JPL Web-interface service. During this 

time, it would be possible to collect a significant amount of 

additional observations that would improve the IOD.

To simulate a possible recovery of each of the objects, the 

error in right ascension α and declination δ, were calculated 

as ( ) ,  , v a v a∆ ∆ = − −α δ α α δ δ .

Where (αv, δv) are the NASA JPL coordinates and (αa, δa) 

are obtained in this study by propagating the state vector 

obtained by using modification of the geocentric Laplace's 

method to the dates indicated in Table 3. 

Columns 4 and 5 of Table 3 show the errors calculated 

for each of the coordinates. For example, the highest error 

is recorded at 41.94 arcmin in right ascension, for the 2019 

JA8 asteroid, during a period of two months after its last 

observation used as input. As can be seen, the highest re-

corded error in decline was 2003 GW with 31.44 arcmin. At 

the mean time of the observations, both asteroids were at a 

very close distance to Earth (as can be seen in Table 1) and 

therefore their mean motion are greater than the others. 

This explains the reason why major errors occurred. In both 

cases, the obtained values make the re-observation very 

likely for these dates, while considering the estimation of the 

initial state vector was made from a geocentric approach.

The boundary conditions for the modification of the 

geocentric Laplace's method are determined by the conver-

gence of the method. In this case, the convergence is subject 

to the fact that it is a VSA; therefore, it would not be possible 

to apply it to data that have too short observation intervals 

(TSA, too short arcs). In this case, it would be necessary 

resort to other methods developed by Mosquera & Salazar 

(2019). Geocentric Laplace's method would not be optimal 

for objects that get too close to Earth at the time of their 

observation (NEAs at their closest approach); moreover, it 

would not be suitable for studying objects that are at very 

large distances (that present a very low proper motion) as in 

the case of observing trans Neptunian objects.

Likewise, the Figs. 7 and 8 show the ephemerides ob-

tained from the NASA JPL (purple dots) compared to those 

Fig. 7. Calculated ephemerides for dates after the last recorded input for NEA and Hungaria-type asteroids: from row one, the results are 
shown for: (1864) Daedalus, 2003 GW (4690) Strasbourg and 2019 JA8, respectively. Blue dotted-line box is the field of vision given by the 
instrumental assembly of the OAUTP.
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estimated in this study (pink squares). The field of vision 

given by the instrumental assembly of the OAUTP is 95´ × 

72´ (blue dotted-line box).

According to Figs. 7 and 8, all the studied asteroids 

would be recoverable from the OAUTP within the field of 

observation, making the recovery procedure possible as 

well as a subsequent refinement of the initial calculation of 

the orbit. The most significant error between the calculated 

ephemerides and the actual position was for 2019 JA8 as-

teroid. This result was expected, given the error in the polar 

representation (Fig. (a)). However, despite this, the object 

can still be recovered within the visual field.

4. CONCLUSIONS

It was demonstrated that the modification of the geocen-

tric Laplace's method, which considers an input given by a 

set of astrometric measurements of a minor body (generally 

more than three observations), permitted the estimation of 

values for quantities such as proper motion and geodesic 

curvature; with which the algorithm's equations were 

solved. From the data used, the one that covers the longest 

time interval is approximately 22 days. It was possible to 

verify that, despite the short time intervals, the methodology 

allows for the production of initial orbits of enough quality 

to subsequently re-observe the bodies.

The errors of the estimated orbit concerning those pro-

vided by the HORIZONS Web-Interface service of NASA's 

JPL were estimated. These errors were grouped in shape and 

orientation for each of the orbits so that the errors in shape 

were less than 53 × 10–3 AU, except for the asteroid 2019 JA8, 

and in terms of orientation, the errors were less than 0.1 rad, 

except for (4690) Strasbourg. Both sets of errors are expect-

ed values when using the two-body problem as a dynamic 

model, i.e. orbital shape and orientation are expected values 

for Keplerian type orbital parameter.

Additionally, the ephemeris for each of the bodies 

Fig. 8. Calculated ephemerides for dates after the last recorded input for MBA-type asteroids: from row one, the results are shown for: (1738) 
Oosterhoff (2717) Tellervo (1568) Aisleen y (2235) Vittore, respectively. Blue dotted-line box is the field of vision given by the instrumental 
assembly of the OAUTP.
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studied, up to two months after the last observation used 

as input, was estimated. These results were compared with 

the NASA JPL Web-interface service. In all cases, it is shown 

that they are recoverable within the field of vision of the 

instrumentation of the OAUTP (95´ × 72´). The highest error 

obtained in α was 41.94´ and 31.44´ for δ, respectively for 

(2019 JA8) and (2003 GW) asteroids. Therefore, the proposed 

methodology shows the importance of modification of 

the geocentric Laplace's method . The method is relatively 

simple to implement, and the results allow for the recovery 

of minor bodies from the Solar System, even when the input 

data observations represent very short arcs.

This study represents the second step in the minor bodies 

observation program of the Solar System implemented in 

the Astronomical Observatory of the Technological Uni-

versity of Pereira, after obtaining the MPC code (W63). The 

codes written in Matlab (https://www.utp.edu.co/observa-

torioastronomico/astrometria/orbital-elements-and-recov-

ery-using-laplace) can be useful for observatories that begin 

their process of studying the IOD of asteroids.
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