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As the laws of physics are expressed in a manner that makes their invariance under coordinate transformations manifest, they 
should be written in terms of tensors. Furthermore, tensors make manifest the characteristics and behaviors of electromagnetic 
fields through inhomogeneous, anisotropic, and compressible media. Electromagnetic fields are expressed completely in 
tensor form, Fαβ, which implies both electric field E



 and magnetic field B


 rather than separately in the vector fields. This study 
presents the Mathematica platform that generates and transforms a second-rank antisymmetric field-strength tensor Fαβ and 
whiskbroom pattern in Minkowski space. The platforms enhance the capabilities of students and researchers in tensor analysis 
and improves comprehension of the elegant features of complete structure in physics.
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1. INTRODUCTION 

Vectors and tensors are the most fundamental study sub-

jects both in undergraduate and graduate physics courses 

(Marion 1970; Jackson 1975; Fowles 1975; Griffiths 1981; 

Reitz 1993), as the laws of physics are expressed in a manner 

that makes their invariance, under coordinate transforma-

tion, manifest the characteristics and behaviors of electro-

magnetic fields in inhomogeneous, anisotropic, and com-

pressible media. The electromagnetic fields are expressed 

completely in a second-rank antisymmetric field-strength 

tensor, Fαβ, which implies both electric field E


 and magnet-

ic field B


, rather than separately in the vector fields. Then, 

electric and magnetic fields, E


 and B


 respectively are the 

elements of a field tensor Fαβ = ∂αAβ – ∂βAα, with the contra-

variant differential operator ∂α and the contravariant 4-vec-

tor ( )0 ,  A A Aα =


 in Minkowski space instead of the vector 

differential operator ∇


 and A


 in 3-vector space (Arfken 

1970; Flügge 1972; Georgi 1982; Parker 1994). Once Fαβ is ob-

tained, we can get the covariant form Fαβ of this tensor using 

metric tensor gαγgδβ and F´μν coordinate transformed by the 

Lorentz transformation in Minkowski space (Fitzpatrick 

2019; Yamamoto 2019). As interested in the quantum cryp-

tography of secure quantum communications has received 

much attention in recent year, we must examine carefully 

quantum entanglement (Ekhert 1991; Fedrizzi 2013); new 

artificial metamaterials (μετα´ in Greek) are controlled by 

the ε permittivity tensor and μ permeability tensor (Veselago 

2006; Kwoen 2018). For the geometry of spacetime in cos-

mology, Einstein field equation, Gμν + Λgμν = 8πTμν, is ex-

pressed with the Einstein tensor Gμν of the curvature of 

spacetime and stress-energy tensor Tμν with metric tensor 

gμν. The Einstein’s field equation is described in tensor form 

completely (Zimmerman 1995; Moskowitz 2017). We can 

see that new technology is developed fundamentally from a 

basis in basic science (Ekhert 1991; Veselago 2006; Fedrizzi 

2013; Kim 2014; Kwoen 2018). Education environments in 

this age work poorly for students in physics to examine the 

tools of basic science. We presented the capability of 

MATHEMATICA for the simulations of electromagnetic 
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field of polarization mode (tensor of rank 1, Choi 2015) and 

manipulating antisymmetric field tensor Fαβ in Minkowski 

space (Yun 2006; Yun 2020a; Yun 2020b), which can be uti-

lized to help students studying the electromagnetic field 

tensor in Minkowski space. 

In this paper, we will manifest the electromagnetic field 

tensor Fαβ in Minkowski space in the MATHEMATICA plat-

form to help readers comprehend and observe the whisk-

broom patterns of the tensor field at various viewpoints. 

For those readers unfamiliar with tensor, we shall briefly 

review its basic concepts in Section II, manifest tensor, and 

simulate the electric fields boosted in Minkowski space with 

the MATHEMATICA platform; we will show whiskbroom 

pattern in Section III, and we conclude in Section IV. Some 

parts of the MATHEMATICA code presenting the process of 

generating and manipulating tensors are also included. 

2. ELECTROMAGNETIC FIELD TENSOR

2.1 Second-Rank Antisymmetric Field-Strength Tensor Fαβ

From the first postulate of special relativity, the math-

ematical equations expressing the laws of nature must be 

covariant, that is, they are of the invariant form under the 

transformations of the Lorentz group (Fitzpatrick 2019; 

Perez 2019; Yamamoto 2019). The space-time continuum, 

also known as Minkowski space, is defined as a four-dimen-

sional space-time with the coordinates (x0, x1, x2, x3) of which 

the metric (x0)2 – (x1)2 – (x2)2 – (x3)2 (Arfken 1970; Georgi 

1982; Ahn 1993). We suppose that there is a well-defined 

transformation that yields new the coordinates (x´0, x´1, x´2, 

x´3), according to some rule:

 x´α = x´α (x0, x1, x2, x3), α = 0, 1, 2, 3 (1)

The tensors of rank k associated with the space-time 

point x are defined by their transformation properties under 

the transformation x → x’. A scalar (tensor of rank zero) is a 

single quantity whose value is not changed by the transfor-

mation. For tensors of rank one, vectors, there are two kinds 

of vectors: a contravariant vector Aα with the components 

A0, A1, A2, A3 and a covariant vector Bβ with the components 

B0, B1, B2, B3. Contravariant vector Aα and covariant vector 

Bβ are transformed according to following rules respectively 

(Jackson 1975):

 
3

0
,x xA A A

x x

α α
α β β

β ββ=

′
′

′∂ ∂
= =

∂ ∂∑  

 = 0 1 2 3
0 1 2 3

x x x xA A A A
x x x x

α α α α ∂ ∂ ∂ ∂
+ + +  ∂ ∂ ∂ ∂

′ ′



′ ′
, (2)

3

0
,x xB B B

x x

β β

α β βα αβ=

∂ ∂′
∂ ′

= =
′∂∑      

 
0 1 2 3

0 1 2 3    .x x x xB B B B
x x x xα α α α

 ∂ ∂ ∂ ∂
= + + +  ∂ ∂ ∂ ′∂ ′ ′ ′

. (3)

We will henceforth use the summation convention for 

repeated indices. The inner or scalar product of two vectors 

is defined as the product of the components of a covariant 

and a contravariant vector:

 B‧A = BαA
α (4)

With this definition, the scalar product is an invariant or 

scalar under the transformation, Eq. (1). The scalar product 

B´‧A´ using Eqs. (2)–(3) is

B x xA B A
x x

β α
γ

βα γ

∂ ∂
⋅ =

∂ ∂

′
′ ′

′
 

  x B A B A B A B A
x

β
γ β γ γ

β γ β βγ
δ∂

= = = = ⋅
∂

 (5)

Thus, confirm that the scalar product is an invariant un-

der the transformation of eq. (1). The Lorentz transforma-

tions of the four-dimensional coordinates, 0(x ,x)  follow the 

invariance of

 2 2 2 2 2
0 1 2 3s x x x x= − − −  (6)

Here, we consider the group of all transformations that 

leave s2 invariant, which is the Lorentz scalar. This group is 

called the Lorentz group (Fowles 1975; Cabrera 2019; Perez 

2019). It contains ordinary rotations, as well as boosted Lo-

rentz transformations. In differential form, the infinitesimal 

interval ds that defines the norm of our space is

 (ds)2 = (ds0)2 – (ds1)2 – (ds2)2 – (ds3)2 (7)

This norm or metric is a special case of the general differ-

ential length element,

 (ds)2 = gαβdxαdxβ (8)

Where, gαβ is called the metric tensor (Arfken 1970; Georgi 

1982; Parker 1994). Comparison of the invariant length (ds)2 

in eq. (8) with the similarly invariant scalar product in eq. 

(6) suggests that the covariant coordinate 4-vector xα can be 

obtained from the contravariant xβ by contraction with gαβ 

and its inverse xα with gαβ, that is,

 xα = gαβx
β, xα = gαβxβ (9)
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For the flat space-time of special relativity, the metric 

tensor is diagonal, with elements g00 = 1, g11 = g22 = g33 = –1. One 

4-potential is defined as ( )0 ,  AA Aα =


 and ( )0 ,  AA Aα = −


. 

The scalar product of two 4-vectors is

 0 0B A B A B A B Aα
α⋅ ≡ = − ⋅



 (10)

Now, we consider the partial derivative operators with 

respect to xα and xα. The transformation properties of these 

operators can be established directly by using the rules of 

implicit differentiation. For example, we have compared 

with the coordinate vector transformation of the covariant 

vector B´α as below:

 ' ~  x xB B
x x x x

β β

α βα α β α

∂ ∂ ∂ ∂
= =

∂ ∂ ∂ ∂′ ′ ′
 

It shows that differentiation with respect to a contra-

variant component of the coordinate vector transforms 

as the components of a covariant vector operator. We use 

the notations ∂α and ∂α for the covariant and contravariant 

differential operators respectively (Jackson 1975): 

 
( )0 1 2 3

0 1 02 3

,  ,  ,  

    ,  ,  ,  ,  

x

x x x x x

α α

∂
∂ ≡ = ∂ ∂ ∂ ∂

∂

   ∂ ∂ ∂ ∂ ∂
= = ∇   

∂ ∂ ∂ ∂ ∂   



 (11)

 
( )0 1 2 3

0
0 1 2 3

,  ,  ,  

    ,  ,  ,  ,  

x

x x x x x

α

α

∂
∂ ≡ = ∂ ∂ ∂ ∂

∂

   ∂ ∂ ∂ ∂ ∂
= = −∇    ∂ ∂ ∂ ∂ ∂  



 (12)

This is the 4-gradient of the 4-potential (φ, A


). The 4-di-

vergence of 4-vector A is the following invariant:

 
0

0

AA A A
x

α α
α α

∂
∂ = ∂ = +∇⋅

∂



 (13)

The four-dimensional Laplacian operator is defined to be 

an invariant contraction by Eqs. (12)–( 13);

 2

2
2

0x
α

α

∂
≡ ∂ ∂ = −∇

∂
  (14)

Electric and magnetic fields are expressed in terms of the 

potentials in vector differential mode as;

 
1 ,  AE B A
c t

ϕ∂
= − −∇ =∇×

∂



  

 (15)

Then the components of these fields are expressed in 

terms of the 4-gradient ∂α of four-potential Aα explicitly

 ( )0 1 1 01 ,x
x

A
E A A

c t x
ϕ∂ ∂

= − − = − ∂ −∂
∂ ∂

 ( )2 3 3 2yz
x

AA
B A A

y z
∂∂

= − = − ∂ −∂
∂ ∂

 (16)

where the second terms from the assignments are x0 = ct, 

A0 = φ, and ∂α from Eq. (13). Now we can write the 3-vector 

fields of rank one to a 4-vector field tensor of rank two as;

0
0 0 0

0

A AE E A A
x x

α
α α α

α

∂ ∂
= − = ∂ −∂
∂ ∂





 (17)

 ( )A AB B A A
x x

β α
αβ α β β α

α β

 ∂ ∂
 = − − = − ∂ −∂
 ∂ ∂ 





 (18)

These equations imply that the electric and magnetic 

fields, six components in all, are the elements of a sec-

ond-rank antisymmetric field-strength tensor Fαβ (Arfken 

1970; Georgi 1982; Parker 1994),

 A AF A A
x x

β α
αβ α β β α

α β

∂ ∂
= − = ∂ −∂
∂ ∂

 (19)

We see that Fαβ is an antisymmetric tensor, for Fβα = −Fαβ. 

Now, we can describe the electric and magnetic fields: E


 

and B


 in a 3-vector space instead, with a second-rank an-

ti-symmetric field strength tensor Fαβ in Minkowski space by 

the 4-gradient ∂α of 4-potential Aα = (φ,  A


) completely. As 

shown in Eq. (16), the components of E


 described with the 

elements of the field tensor Fαβ: E1 = E10 = F10 = ∂1A0 − ∂0A1, 

and B1 = B32 = F32 = −F23 = − (∂2A3 − ∂3A2) by Eqs. (16)–(19). 

The second-rank antisymmetric field-strength tensor Fαβ in 

matrix form is 

 

F A Aαβ α β β α= ∂ −∂ ,

 

          
        

     
      

00 01 02 03
1 2 3

10 11 12 13
1 3 2

20 21 22 23
2 3 1

30 31 32 33
13 2

0
0

0
 

0

 

E E EF F F F
E B BF F F F
E B BF F F F

BE BF F F F

− − −   
   −   = =   −
      −  

. (20)

Once field tensor Fαβ is obtained, we can get its covariant 

field tensor Fαβ and dual field- strength tensor �αβ by using 

the metric tensor gαγgηβ and the pseudo tensor εαβγδ directly, 

and we will transform the electromagnetic field tensors with 

the Lorentz transformation (Georgi 1982; Parker 1994). The 

manipulation of these tensors is performed in MATHEMAT-

ICA conveniently (Zimmerman 1995; Yun 2006; Vrbik 2012).



134https://doi.org/10.5140/JASS.2020.37.2.131

J. Astron. Space Sci. 37(2), 131-142 (2020)

3. ELECTROMAGNETIC FIELD TENSOR Fαβ WITH 
MATHEMATICA

3.1 Electromagnetic Field Tensor Fαβ

Tensor is a very sharp thinking tool and can be a very 

beneficial interactive to mathematics. Much nonsense can 

be hidden behind a cloud of tensor symbols. Tensor calcu-

lation is generally a tedious process and is prone to error 

when alone by hand. Mastery of mathematical tools cannot 

be acquired by just reading about them; it is helpful to 

practice and examine the calculations with handling com-

putations (Yun 2006; Vrbik 2012; Yun 2020a). We used the 

MATHEMATICA package Tensorial 3.0 as a general tensor 

calculus package (Cabrera 2019). It should be useful both as 

an introduction to construct the tensor and for calculation 

with helpful commands, such as DeclarebaseIndices, 

DefineTensorShortcuts, and SetTensorValuesRules. Some 

parts of the MATHEMATICA codes in the tensor construc-

tion process are presented as In[#]=: for the input and 

Out[#]= for the convenience of readers, for the output data 

to be displayed directly on paper. The initial step is to load 

“Tensorial’” for the package Tensorial 3.0.

 In[1]: = Needs[“Tensorial‘“, 

 “C:/TensorCalculus3 / Tensorial.m”]   

 Clear[“Global‘*”];

In[2]: = DeclareBaseIndices [{1, 2, 3, 4}]

 DeclareIndexFlavors

 /@{{red, Red},{rocket, SuperStar}};

In[3]: = DefineTensorShortcuts[{{x, A, B,   , E}, 1},

 {F,  , E, B, g, Λ}, 2},{{F, ε}, 4}]

 labs={x,δ , g, Γ };

In[4]: = {Fuu[α  β], Euu[α  β], Buu[α  β], Fuu[α,  β]

 Λdd[α,  β], Ad[β], xu[α], Ju[α]}

Out[4] = {Fαβ, Eαβ, Bαβ, Fαβ, Λαβ, Aβ, x
α, Jα} 

For the MATHEMATICA coding, input for electric field Eα0 

and its output are

In[6]: = Euu[α0]==PartialD[labs][Au[0], xd[α]]

 –PartialD[labs][Au[α], xd[0]]

Out[6] = 
0

0 0
x xE A A
α

α α= ∂ −∂  (21)

In[7]: = % // EinsteinArray[{1, 2, 3}] 

Out[7] = {E10 = ∂x1A
0 – ∂x0A

1, E20 = ∂x2A
0 – ∂x0A

2, E30 

 = ∂x3A
0 – ∂x0A

3}

EinsteinArray[1, 2, 3] expresses a tensor with components 

explicitly.

In[8]: = Buu[αβ]== PartialD[labs][Au[α]], xd[β]]

 – PartialD[labs][Au[β]], xd[α]]

Out[8] = x xB A A
β α

αβ α β= ∂ −∂  (22)

In[9]: = % // EinsteinArray[{1, 2, 3}]

Out[9] = 
 

2 1 3 1

2 1 2 3

3 1 3 1

11 12 1 2 13 1 3

21 1 2 22 23 3 2

31 1 3 32 2 3 33

0

0

0

x x x x

x x x x

x x x x

B B A A B A A
B A A B B A A
B A A B A A B

 = = ∂ − ∂ = ∂ − ∂
 

= −∂ + ∂ = = −∂ + ∂ 
  = −∂ + ∂ = −∂ + ∂ = 

In[11]: = Fuu[α, β]==PartialD[labs]  Au[β], xd[α]

 – PartialD[labs]Au[α], xd[β]

Out[11] = 
x xF A A
β α

αβ α β= −∂ + ∂   (23)

For the 4-gradient operators, they are denoted differently 

in the version of MATHEMATICA as á
á

,  
x xx x α

α

α
α

 ∂ ∂ ∂ = = ∂ ∂ = = ∂ 
∂ ∂  

, we 

can write ∂α instead xα
∂  outputs of MATHEMATICA. Then, 

electric field E


 and magnetic field B


 can be presented with 

a 4-vector field tensor of rank two as like in Eqs. (21)–( 23) 

could be written in tensor mode as

 
,

( ),
.

0 0 0

  
E A A
B A A
F A A

α α α

αβ α β β α

αβ α β β α

−

 = ∂ − ∂
 = − ∂ ∂
 = ∂ − ∂

 (24)

Thus, the components of the vector fields E


 and B


 are 

presented as the elements of the field tensor Fαβ. Now, we 

can combine the E


 and B


 fields in a tensor Fαβ as follows:

In[12]: = fbRule =

 {Fuu[3,2] → Bd[1], Fuu[2,3] → –Bd[1], Fuu[1,3]

  → Bd[2], Fuu[3,1] → –Bd[2], Fuu[2,1] → Bd[3],

  Fuu[1,2] → –Bd[3], Fuu[0,0] → 0, Fuu[1,1] → 0, 

 Fuu[2,2] → 0, Fuu[3,3] → 0}

 feRule =

 {Fuu[1,0] → Ed[1], Fuu[2,0] → Ed[2], Fuu[3,0]

  → Ed[3], Fuu[0,1] → –Ed[1], Fuu[0,2] → –Ed[2],

 Fuu[0,3] → –Ed[3]}

In[13]: = Fuu[α, β]==PartialD[labs][Au[β], xd[α]]

 PartialD[labs][Au[α], xd[β]] Fuu[α, β];
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 febvalues= %// EinsteinArray[]; 

 febvalue/.fbRule/.feRule;

In[17]: = Fuu[α, β] ==MatrixForm[%%]] == MatrixForm[%]

Out[17] = 

Fαβ = ∂αAβ − ∂βAα

          

       
   

  
    

00 01 02 03
1 2 3

10 11 12 13
1 3 2

20 21 22 23
2 3 1

30 31 32 33
13 2

0
0

0
   

0

E E EF F F F
E B BF F F F
E B BF F F F

BE BF F F F

− − −   
   −   = =   −
      −  

 (25)

This is a creation of the field tensor Fαβ in MATHEMATICA, 

which is same to Eq. (20). Thus, we obtain the electromag-

netic field of the contravariant field tensor Fαβ in Minkowski 

space. Then, we can get the covariant field tensor Fαβ from 

contravariant field tensor Fγη with metric tensors gαγgηβ, for 

which the MATHEMATICA codes are as follows:

In[18]: =

, ,

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0

  
0 0 1 0 0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 1

           

0 0

 

0 1

gbasis trans itrans

γ γβ γ γβ
γβ γ γβ γ

−     
     − −     = = =
     −
     

−     

In[19]: = SetTensorValueRules[gdd[α, β], gbasis];

 SetTensorValueRules[Fuu[α, β], fbasis]; 

 TensorValueRules[g];

 TensorValueRules[F];

In[20]: = Clear[F, G, PF, PG, GF, UF, UG];

In[21]: = Fdd[α,β]==gdd[α, γ]gdd[η, β]Fuu[γ, η]; 

 gdd[α, γ] gdd[η, β]Fuu[γ, η];

 %//MericSmplify[g];

 %%//ToArrayValues[];

 Fdd[α,β]==gdd[α, γ]gdd[η, β]Fuu[γ, η]

 == MatrixForm[%]

Out[25] = 

  
  

  

1 2 3

1 3 2

2 3 1

13 2

0       
0    

0
 0

 

E E E
E B B

F g F g
E B B

BE B

γη
αβ αγ ηβ

 
 − − = =  − −
  − − 

 (26)

Both Fαβand Fαβ are the second-rank, antisymmetric field-

strength tensors. Another useful quantity, dual field-strength 

tensor �αβ, is obtained from Fγη with pseudotensor εαβγδ, as 

shown in Eq. (27).

In[26]: = SetTensorValues[suuuu[χ, λ, µ, ν],

 PermutationPseudotensor[NDim]];

 fdbRule = {Fdd[3,2] → Bd[1], Fdd[2,3] → –Bd[1],

 Fdd[1,3] → Bd[2], Fdd[3,1] → –Bd[2],

 Fdd[2,1] → Bd[3], Fdd[1,2] → –Bd[3],

 Fdd[0,0] → 0, Fdd[1,1] → 0, Fdd[2,2] → 0, Fdd[3,3] → 0};

 fdeRule = {Fdd[1,0]→ –Ed[1], Fdd[2,0]→ –Ed[2],

 Fdd[3,0] → –Ed[3], Fdd[0,1] → Ed[1],

 Fdd[0,2] → Ed[2], Fdd[0,3] → Ed[3]};

In[27]: = 1
2
ε uuuu[αβγη] Fdd[γ,η];

 %// ToArrayValues[];

 %/. fdbRule/.fdeRule;

  uu [α, β]== 1 
2
ε uuuu[αβγη] Fdd[γ,η] == Matrix[%]

Out[29] = 

    
1 2 3

1 3 2

2 3 1

3 2 1

0
1  

0
0

F

0
2

B B B
B E E
B E E
B E E

αβ αβγη
γηε

 
 
 =  
  
 

− − −
−

=
−

−


 (27)

3.2 Maxwell Equation in Field Tensor Fαβ

Inhomogeneous Maxwell equations in free space (in vac-

uum) are presented in 3-vector differential form as (Jackson 

1975)

 1 44 ,  EE B J
c t c

ππρ ∂
∇⋅ = ∇× − =

∂



   

 (28)

We can present this as a covariant field tensor equation with 

a second-rank field tensor Fαβ and 4-current ( )  : ,J J c Jα α ρ=


 4
x

F J
cα

αβ βπ
∂ =  (29)

Here we can present it and its components in MATHE-

MATICA explicitly as:

In[31]: = SetTensorValues[Ju[i], {cρ, j1, j2, j3}];

 PartialD[labs][Fuu[α, β], xu[α]]== (4π)/cJu[β];

 PartialD[labs][Fuu[α, 0], xu[α]]=(4π)/c Ju[0] %

 //ToArrayValues[]

Out[34] = 0 04
x

F J
cα

α π
∂ =

1 2 3

041 2 3
x x x

JE E E
c
π

∂ + ∂ + ∂ =       

It is just a tensor mode of 04   E for J cπρ ρ⋅ = =∇


. And 

the case of 14 J
c
π :
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In[35]: = PartialD[labs][Fuu[α, 1], xu[α]]=(4π)/c Ju[1]%

 //ToArrayValues[]

Out[36] = 1 14
x

F J
cα

α π
∂ =

3 2 0

4 12 3 1
x x x

jB B E
c
π

−∂ + ∂ −∂ =  

This is the 1st component of 
1

1   EE
c t

 ∂
∇× − = ∂ 





 
1

4  J
c
π 

 
 



, its Am-

pere’s law in vector differential mode. The homogeneous 

Maxwell equations in 3-vector differential mode are 

 10,  0BE E
c t
∂

∇⋅ = ∇× + =
∂



  

 (30)

It could be presented with the 4-gradient dual field tensor 

Fαβ as

 0
x α

αβ∂ =  (31)

Then, we can display the array values of that field tensor 

equation as

In[38]: = PartialD[labs][ uu[α, 1], xu[α]] = 0%

 //ToArrayValues[]

Out[39] = 0J
x α

α∂ =  

0 3 21 2 3 0
x x x

B E E−∂ + ∂ −∂ =  

It shows that the first component of 
1

1 BE  0
c t

 ∂
∇× + = ∂ 





in field 

tensor mode is zero.

In[41]: = PartialD[labs][ uu[α, 0], xu[α]] = 0

 % // ToArrayValues[]

Out[42] = 0 0
x α

α∂ =  

1 2 31 2 3 0
x x x

B B B∂ + ∂ −∂ =

It’s B∇⋅
 

 =0. Therefore, the Maxwell equations in inhomo-

geneous and homogeneous media completely presented in 

the 4-gradient mode of antisymmetric field strength tensors 

Fαβ or αβ  in MATHEMATICA:

 4 ,  0F J
c

αβ β αβ
α α

π
∂ = ∂ =  (32)

This is the covariant tensor equations of the microscopic 

Maxwell equations in free space. For the macroscopic Max-

well equations in media, it is necessary to distinguish two 

field strength tensors, Fαβ = ( E


, B


) and Gαβ = ( D


, H


), where 

Gαβ is obtained from Eq. (25) by E D→
 

 and B


→ H


, while D


= ε E


, H


=
1 B
µ


 (Choi 2019). The covariant form of the macro-

scopic Maxwell equation is then 

 4 ,  0G J
c

αβ β αβ
α α

π
∂ = ∂ =  (33)

Therefore, the Maxwell equations, in Eqs. (32)–(33), are 

described with the second-rank antisymmetric field-strength 

tensor of an elegant and complete tensor mode (Arfken 

1970; Georgi 1982; Parker 1994).

3.3 Lorentz Transformation of the Fαβ Field Tensor

As the fields E


 and B


 are the elements of a second rank 

field tensor Fαβ, their values in one inertial frame K’ can be 

expressed in terms of the values in another inertial frame K, 

and, reversely, the values in the K frame in terms of the val-

ues in the K’frame according to the Lorentz transformation 

of Fαβ (Jackson 1975; Parker 1994; Yamamoto 2019):

 x xF F
x x

µ ν
µν αβ

α β

′ ′∂ ∂′ =
∂ ∂

 (34)

 x xF F
x x

µ ν
µν αβ

α β

∂ ∂ ′=
′ ′∂ ∂

 (35)

In the matrix form of Eq. (34) can be written

 F AFA′ =   (36)

For the transformation of the rotation and boosting about 

some axis, A can be written by Lorentz transformation L:

 
L

L S K
A e
ω ζ = − ⋅ − ⋅


=

  



 (37)

where ω  and ζ


 are constant 3-vectors, and they corre-

spond to the rotation and boost of the axis of one coordinate 

to another. Here, we consider first a simple situation in 

which ω  = 0 and 1ζ ζε=




. Then, L


= –ζ 1 K


, A = eL = (I − K1
2) 

− K1 sinh ζ + K1
2 cosh ζ. The boost vector ζ



 can be written in 

terms of the relative velocity β


 as ζ


 = βˆ tanh−1 β. Second, 

in the case of rotation in which ζ = 0 and ω  = ω 3̂ , A is de-

termined by L = − Sω ⋅




. Explicitly for the case of boost and 

rotation, the transforming matrices A[ζ 1  ] and A[ω 3̂ ] are 

found to be (Jackson 1975):

 

cosh sinh
sinh cosh cos sin

sin cos1 3

0 0 0 0 0 0
0 0 0 0

   
0 0 1 0 0 0
0 0 0 1 0

    

0 0 1

      A A

ζ ζ
ζ ζ ω ω

ζ ε ωε
ω ω

   
   
      = =      
   
   

 (38)
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Now, we consider the coordinate transformations of the 

boost in ζ


 = ζ 1ε̂  in Minkowski space to visualize the electric 

fields from the F’µν and Fµν field tensors, for which MATHE-

MATICA codes are prepared (In[48]–In[62]). For the macro-

scopic Maxwell equations, Gαβ = ( D


, H


), G’µν and Gµν are pre-

pared with the MATHEMATICA codes in In[55] and In[62].

 F Fµν µ ν αβ
α β= Λ Λ′  (39)

 F Fµν µ ν αβ
α β

′= Γ Γ  (40)

where the  transα
β =Λ and itransα

β =Γ  tensors described in 

In[18], γ = (1 − β2)−1/2, and β = v/c. Now, we can determine 

the Lorentz transformations {F’µν, Fµν} from {Fαβ, F’αβ} corre-

sponding to a boost along ζ


 = ζ ̂ , in Minkowski space by 

using MATHEMATICA. The complete MATHEMATICA code 

1 for evaluation is listed in Appendix.

In[46]: = Clear[F,G,PF,PG,UF,UG,Λ,Γ,primez,unprimez];

In[48]: = PFuu[µ, ν]=Λud[µ, α] Λud[ν, β]Fuu[α, β]

 Λud[µ, α] Λud[ν, β]Fuu[α, β]; 

 %// ToArrayValues[];

In[55]: = primez%;

 primez//Collect[#,E1] &;

 %//. gRule//Collect[#,γ] &

 PGuu[µ, ν]]=%/. gRule/.mRule//Collect[#,γ] &

In[62]: = UFuu[µ, ν]=Γud[µ, α] Γud[ν, β]PFuu[α, β]

 Γud[µ, α] Γud[ν, β]PFuu[α, β];

 %// MetricSimplify[Γ];

 unprimez=%;

 unprimez// Collect[#,E1] =%;

 UFuu[µ, ν]= %/.gRule/.pRule//Collect[#,γ]&

 UGuu[µ, ν]=%%/. gRule/.qRule//Collect[#,γ]&

Out[59] = 

 

( )
( )

( )
( )

( )
( )

( )
( )

 

    
       

     
   

1 2 3 3 2

1 2 3 2 3

2 3 3 2 1

3 2 2 3 1

0
0

0
0

F F
E E B E B

E E B B E
E B B E B
E B B E B

µν µ ν αβ
α β

γ β γ β
γ β γ β

γ β γ β
γ β γ β

′ = Λ =

− − − − +
 

− + 
 − − −
  + − + 

Λ

 (41)

( )
( )

( )
( )

( )
( )

( )
( )

 
    

    
  

1 2 3 3 2

1 2 3 2 3

2 3 3 2 1

3 2 2 3 1

0  
0  

0
0

 

G G
D D H D H

D D H H D
D H H D H
D H H D H

µν µ ν αβ
α β

γ β γ β
γ β γ β

γ β γ β
γ β γ β

′ = Λ =

− − − − +
 

− + 


Λ

− − −
  + − + 

 (42)

Out[69] = 

( ) ( )
( ) ( )

( ) ( )
( ) ( )

1 2 3 3 2

1 2 3 2 3

2 3 3 2 1

3 2 2 3 1

0
0

0
0

F F
E E B E B

E E B r B E
E B B E B
E B B E B

µν µ µ αβ
α β

γ β γ β
γ β β

γ β γ β
γ β γ β

′= Λ Λ =

′ ′ ′ ′ ′− − + − − 
 ′ ′ ′− + − 
 ′ ′ ′ ′ ′+ + −
  ′ ′ ′ ′ ′− − − 

  (43)

( ) ( )
( ) ( )

( ) ( )
( ) ( )

1 2 3 3 2

1 2 3 2 3

2 3 3 2 1

3 2 2 3 1

0
0

0
0

G G
D D H D H

D D H H D
r D H H D H
r D H H D H

µν µ µ αβ
α β

γ β γ β
γ β γ β

β γ β
β γ β

′= Λ Λ =

′ ′ ′ ′ ′− − + − − 
 ′ ′ ′− + − 
 ′ ′ ′ ′ ′+ + −
  ′ ′ ′ ′ ′− − − 

  (44)

Thus, we obtain the Lorentz transform of the second-rank 

antisymmetric field-strength tensor Fαβ in the K system and 

F’αβ in the K’ system: these are performed in MATHEMATI-

CA platform precisely. Comparing the fields {F’ µν, G’ µν} with 

the fields {Fαβ, Gαβ} respectively, we can write down directly 

the components of the fields { E


’, B


’} in the K’ system and of 

{ E


, B


} in the K system from the Lorentz transformed field 

tensors in Out[59] and Out[69] as below:

 ( )
( )

( )
( )

'
' '
' '

1 1 1 1

2 2 3 2 2 3

3 3 2 3 3 2

   
E E B B
E E B B B E
E E B B B E

γ β γ β
γ β γ β

 =  =
 = − = + 
 = + = − 

′
 (45)

 ( )
( )

( )
( )

' '
' ' ' '
' ' ' '

1 1 1 1

2 2 3 2 2 3

3 3 2 3 3 2

   
E E B B
E E B B B E
E E B B B E

γ β γ β
γ β γ β

 =  =
 = + = − 
 = − ′ = + 

 (46)

The components of the Lorentz field tensor may be 

summarized with three-dimensional vector fields as below 

(Arfken 1970; Georgi 1982; Parker 1994);

 
( ) ( )

( ) ( )

2

2

E E B E
1

B B E B
1

γγ β β β
γ
γγ β β β
γ


′ = + × − ⋅ +


 ′ = − × − ⋅ +

     

     

 (47)

 

 

  (48)

 

 

( ) ( )

( ) ( )

2

2

E E B E
1

1
B B E B

γγ β β β
γ
γγ β β β
γ


′ ′ ′= − × + ⋅ +


 ′ ′ ′= + × + ⋅ +

     

     

 

where β


 is the boosting velocity in arbitrary direction in 

K system. However, the tensor transforms, Eqs. ((41)–( 44)) 

are calculated on the base of boost 

1β βε=


 in K system 

with MATHEMATICA.
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3.4 Visualizing Electromagnetic Field of a Uniformly 
Moving Point Charge

As an example of visualizing the transformation of the 

electromagnetic field tensor, we consider the fields seen by 

an observer in system K when a point charge q at the origin 

of the K’ system moves in a straight line of x1 with a velocity 

v  (Yun 2006; Vrbik 2012; Yun 2020a). We suppose that the 

charge moves in the positive x1 direction whose closest dis-

tance of approach to the observer is b. The observer is at the 

point P in Fig. 1. At t = t’ = 0, the origins of the two coordi-

nate systems coincide, and the charge q is at its closest dis-

tance to the observer.

In frame K’, the electric field is calculated as ' qE
r ′

 
= −∇ = 

 

 

( 132
ˆ 

qq r vt e
rrr

′ − = = +−−  ′′′ 



)  1  22
ˆ Ee Eb ′ ′= +

 

 and the magnetic field B 0.′ =


Be-

cause t’= rt and ( ) ( )2 22 ' 2r b vt b v tγ′ = + = + , we can write E


 and 

B


 fields in K system as follows by Eq. (43):

  (49)

                                                                                                                                 ,

 

( )

( )

'

'

1 1 3
2 2 2 2 2

2 2 3
2 2 2 2 2

3 0

γν

γ ν

γγ
γ ν

 = = −
 +

 = =

+


=

q tE E
b t

q bE E
b t

E  

 

( )

( )
( )

'1 1

2 2 3

3 3 2 2 3
2 2 2 2 2

0
0

B B
B B E

q bB B E E
b t

γ β
γγ β β β
γ ν

′
= =

 = − =


=

′

′ = =′+
 +

 (50)

H e r e ,  w e  w r i t e  m a g n e t i c  f i e l d  i n  K  s y s t e m  a s 

( )3 2 2 3
ˆB 'B E E eγ β β= = × =

  

 in vector form for B1 = B2 = B’3 = 0. 

Then, the fields are observed at point P in K system when 

the point charge q boosted in the x1 direction as

 
( )
( )

1 2
1 1 2 23

3 2 2 2 2

ˆ

1

ˆ
ˆ

n
ˆ

si

q te be
E E e E e

r r

γ ν

β ψ

− +
= = +

−



 (51)

Fig. 1. A particle of charge q at the origin of the K’ system is moving at a 
constant velocity v- and passes an observation point P in the K system at an 
impact parameter b. The lines of the electric field vector for a charged particle 
at rest and in motion are observed at some viewpoints in the K system.

Fig. 2. Whiskbroom platform of 


E  and 


B  fields. The platform manipulate the electromagnetic fields at P in K system from the 
charge q at origin in K’ system boosting in direction x1. It can be possible to manipulate the platform in three field modes: 
electromagnetic field mode, electric field mode, and magnetic field mode. It present various ’whiskbroom’ pattern according to the 
control parameters (b, β, t, and ViewPoint) in the platform. In the frame K’, the observer point P is at distance ( )′

22r = b + vt'  away 
from q. We will to express r’ in terms of the coordinates in K system.
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( ) 2 2 3
ˆγ β β′= × = =

 

B E E e 3 3
ˆB e  (52)

where ψ = cos−1(n̂. v̂), and uses the identities: b = –n sinψ 

and γ2 − γ2β2 = 1. We can calculate electric field and magnetic 

field of a uniformly moving charged particle at P in K using 

the Eqs. (49–50) and simulate the fields in MATHEMATICA 

platform as Fig. 2. In this platform, electromagnetic fields 

can be operated in three field modes: electromagnetic field 

(Fig. 2), electric field (Fig. 3) and magnetic field modes (Fig. 

3). While we control the parameters in values1={b, t, β, ψ, γ} 

at the different ViewPoint in the platform, we can observe 

different field pattern at the some Viewpoints in the plat-

form as shown in Fig. 4. 

We can appropriately manipulate the platform for the in-

tended pattern of fields in K system with an adjusted series 

of control parameters in the MATHEMATICA platform. In 

the electromagnetic field mode, we can examine the behav-

ior of the magnetic fields, ( )2 2 3E E êγ β β′× =
 

 while the elec-

tric field is 1 1 2 2E ê êE E= +


 from the graphics in Fig. 5 dynam-

ically, which confirms the electromagnetic interaction of B


 

= ( )3 2EB γ β ′= ×
  

 in Eq. (50). Hence, we can visualize the ap-

parent electric field pattern by changing the boost values (β) 

of {v, 0.2000, 0.4900, 0.002}, as shown in Fig. 5 in the MATH-

EMATICA platform. This is so-called whiskbroom pattern of 

lines of electric field (Arfken 1970; Georgi 1982; Bandyopad-

hyay 1988).

It is not until we visualize the electric fields in the K frame 

from the potential of the boosting charge at the K’ frame 

that we can identify clearly the features of the whiskbroom 

pattern in Minkowski space. The illustrations or descriptions 

about the whiskbroom pattern in most textbooks have not 

presented the pattern with graphics yet (Arfken 1970; Georgi 

1982; Bandyopadhyay 1988; Fitzpatrick 2014; Yamamoto 

2019); the MATHEMATICA platform here can manipulate 

the lines of whiskbroom pattern precisely by changing the 

parameters of the control values to the tensor fields. The 

MATHEMATICA programs for manipulating the field tensor 

Fαβ and the whiskbroom pattern in this paper are available 

on the Web site (Yun 2020a; Yun 2020b). Even if MATHE-

MATICA has not yet been installed on a user’s computer, the 

user may use a CDF file instead (Yun 2020a; Yun 2020b) in 

CDF Player free download at Wolfram site (Wolfram 2020).

Fig. 3. Whiskbroom platforms of 


E  and 


B  fields. (a) In electric field mode, the fields are viewed in take the ⊙x3 direction and the boost is on x1 axis. (b) In 
magnetic field mode, the fields are viewed along the ⊗x1 direction. The 



B  field is along to the x3 axis.

(a) (b)

(a) (b) (c) (d) (e) (f)

Fig. 4. Electric fields snapped from the different snap conditions in the whiskbroom platform (Fig. 2): initial setup of value1={c = 1, γ = 3, q = 1, β = 0.4185, b = 
0.1319, t = 0.1123} and ViewPoint1= {0.001355, –0.5689, –4.7564}. Snaps from the left are: (a) from the initial setup value1 and ViewPoint1, (b) change ViewPoint1 to 
ViewPoint3={0, –0.1472, 0}, (c) change t → 3.1123 and ViewPoint2 = {0.001355, –0.5689, 4.7564}, (d) change to ViewPoint1 from (c), (e) change t → 1.1312 from (c), (f) 
change t → 1.1123 of value1 only.
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4. CONCLUSION

In this paper, we have presented the manifesting of the 

electromagnetic field tensor Fαβ in Minkowski space, which 

enables the comprehension and examination of the field 

tensor with control parameters, such as boosting speed β 

and impact parameter b, in the MATHEMATICA platform. 

We can then show the whiskbroom pattern precisely in the 

MATHEMATICA platform. Nowadays, the conceptualization, 

visualization, and quantization of physics concepts of electro-

magnetic field tensors has become essential in the develop-

ment process for knowledge-based information technology. 

We expect that the MATHEMATICA platform will be a useful 

starting step for physics students and researchers to construct 

and examine tensor fields practically in Minkowski space.
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Appendix A: MATHEMATICA CODES

The MATHEMATICA codes below are a part of those 

codes that produce the tensor fields and plots of the vector 

fields. However, with only these codes, the vector field could 

not be produced. The tensor fields are produced with the 

complete htensorj procedure (Yun 2020a; Yun 2020b).

MATHEMATICA code 1

In[46]: = Clear[F,G,PF,PG,UF,UG,Λ, Γ,primez,unprimez]; 

 gRule={ γ2 − β2γ2 → 1, β2γ2 − γ2 → −1};

 mRule={E1 → D1, E2 → D2, E3 → D3, B1 → H1,

 B2 → H2, B3 → H3}; 

 pRule={ E1 → E1’, E2 → E2’, E3 → E3’,B1→
 B1’,B2 → B2’, B3 → B3’};

 qRule={ E1 → D1’, E2 → D2’, E3 → D3’, B1

 → H1’, B2→ H2’, B3→ H3’};

In[47]: = SetTensorValueRules[Λud[α, β], trans] 

 SetTensorValueRules[Γud[α, β], itrans] 

 SetTensorValueRules[Fuu[α, β], fbasis] 

 SetTensorValueRules[Guu[α, β], fbasis]

 SetTensorValueRules[Λ] 

 SetTensorValueRules[Γ]

In[48]: = PFuu[µ, ν]=Λud[µ, α] Λud[ν, β]Fuu[α, β]

 Λud[µ, α] Λud[ν, β]Fuu[α, β];

 %// ToArrayValues[];

In[55]: = primez=%;

 Primez//Collect[#,E1] &;

 %/.gRule//Collect[#,γ] &

 PGuu[µ, ν]]=%/.gRule/.mRule//Collect[#,γ] & 

In[62]: = UFuu[µ, ν]=Γud[µ, α] Γud[ν, β]PFuu[α, β]

 Γud[µ, α] Γud[ν, β]PFuu[α, β]; 

 %// MetricSimplify[Γ];

 unprimez=%;

 unprimez // Collect[#,E1] =%;

 UFuu[µ, ν]=%/. gRule/.pRule//Collect[#,γ]&

 UGuu[µ, ν]=%%/.gRule/.qRule//Collect[#,γ]&

MATHEMATICA code 2

In[81]: = Manipulate[

 values1={c → 1, γ → 3, q → 1, b → 0.131943, t →
 0.11233, ψ → 1.6648};

 view = {{0.001355, –0.56895, –4.7654}, {0.001355,

 0.56895, 4.7654}, {0, –0.1472,0}, {0, 0.1319, 0}, 

 {0, –0.1319, 0}, {0, –1319.1, 1319.1}};

 tensor2 = Evaluate[{Sin[−q(b2 + v2t2)1/2x)/(b2 +

 (vt)2)3/2)γ2(1 − v2Sin[ψ]2)3/2], Cos[q(b2 + v2t2)1/2y)/

 (b2 + (vt)2)3/2)γ2(1 − v2Sin[ψ]2)3/2]}//.values1];

 tensor3 = Re[Evaluate[Insert[tensor2,0,3]]]; 

 efields = {{Thickness[0.021175], Arrowheads

 [0.0625], Hue[0.5937], Table[Arrow[[{{0,0,0},

 tensor3}], {x, −π, π, π/8},{y, −π, π, π/8}],

 ControllerLinking→ All}}};

 gr50 = {{Text[StyleForm[“β=”,{0.65, –0.01,0}]}};

 gr51 = {{Text[StyleForm[“v”,v,{0.85, –0.01,0}]}}; 

 boot1 = {Thickness[0.00453], Arrowheads 

 [0.02788], Purple, Arrow[{{0,0,0}, {0.51, –0.02,0}}],

 AspectRatio→Automatic};

 p1 = Graphics3D[Join[{efields, boost1, gr50, gr51}],

 Axes → False, Boxed → False, 

 PlotRange → {{–1,1},{–1,1},{–1,1.3}}, 

 ImageSize →{380,380},

 ViewPoint → view[[p]], 

 DisplayFunction → $DisplayFunction;

 Show[ p1],

 Style[“Whiskbroom pattern”, Bold],

 {b, 0.1319, Row [{“impact parameter:”, 

 Subscript[“b”, Style[“”,Italic]]}},

 {{1.0 × 10−15, 0.01, 0.1219, 0.1319, 0.4713, 0.6714,

 0.8319, 1.2221}},

 {{v, 0.4185, Row[{“boost :”, Subscript[“β”,

 Style[“”, Italic]]}},

 {{1.0 × 10−15, 0.01, 0.4185, 0.4217, 0.4343, 0.4709,

 0.4727, 0.4731}},

 {{t, 0.1123, Row [{“time :”, Subscript[“t”, Style[“”, Italic]]}},

 {{1.0 × 10−15, 0.1123, 0.3123, 1.1003, 3.1123}},

 {{p, 1, Row[{“view point: “,Subscript[“p”, 

 Style[“ “,Italic]]}},

 {{1, 2, 3, 4, 5, 6}},

 TrackedSymbols: → {b,v,t,p},

 Initialization: → (huefunc[x] := 

 Hue[If[v >1,0.,If[x<0,0.671,0.671(1-x)]]])]

Out[81] = Fig. 2




