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In this study, we investigate the associations between the solar variability and teleconnection indices, which influence 
atmospheric circulation and subsequently, the spatial distribution of the global pressure system. A study of the link between 
the Sun and a large-scale mode of climate variability, which may indirectly affect the Earth’s climate and weather, is crucial 
because the feedbacks of solar variability to an autogenic or internal process should be considered with due care. We have 
calculated the normalized cross-correlations of the total sunspot area, the total sunspot number, and the solar North–South 
asymmetry with teleconnection indices. We have found that the Southern Oscillation Index (SOI) index is anti-correlated 
with both solar activity and the solar North–South asymmetry, with a ∼3-year lag. This finding not only agrees with the fact 
that El Niño episodes are likely to occur around the solar maximum, but also explains why tropical cyclones occurring in the 
solar maximum periods and in El Niño periods appear similar. Conversely, other teleconnection indices, such as the Arctic 
Oscillation (AO) index, the Antarctic Oscillation (AAO) index, and the Pacific-North American (PNA) index, are weakly or only 
slightly correlated with solar activity, which emphasizes that response of terrestrial climate and weather to solar variability are 
local in space. It is also found that correlations between teleconnection indices and solar activity are as good as correlations 
resulting from the teleconnection indices themselves.
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1. INTRODUCTION 

One of the most intensively studied current multidis-

ciplinary scientific issues is estimating the anthropogenic 

contribution to global warming. This has led to investigating 

the possible role of the Sun with respect to a better 

understanding of natural climate change. As a result, it has 

been shown that the terrestrial climate system responds to 

the solar variability via changes in the Sun’s total irradiance 

(Frohlich 2006), the solar extreme ultraviolet (EUV) 

irradiance (Emmert & Picone 2010; Gray et al. 2017), the 

Earth’s magnetic/electric systems (Burns et al. 2007, 2008), 

galactic cosmic ray (GCR) influx (Tinsley & Deen 1991; 

Pudovkin et al. 1997; Marsh & Svensmark 2000; Roldugin & 

Tinsley 2004; Pudovkin 2004; Haigh 2007; Bazilevskaya et 

al. 2008; Artamonova & Veretenenko 2011), solar energetic 

particle events (Veretenenko & Thejll 2004; Cho et al. 2012; 

Mironova et al. 2012; Mironova & Usoskin 2013, 2014), high-

speed solar winds (Zhou et al. 2016), etc. In addition, the 

solar North–South asymmetry has recently been considered 

as one of the parameters affecting climate conditions (e.g., 

Cho et al. 2012; Kim et al. 2017; Chang 2018; Kim et al. 2018).

Even though the manifestation of the response to solar 

activity appears to be more local in both time and space 

than global, there is indeed phenomenological evidence 

that solar activity is linked to changes in terrestrial weather 

and climate on the timescales of days to several tens of year 

(Svensmark & Friis-Christensen 1997; Marsh & Svensmark 

2000; Tinsley 2000; Krivova & Solanki 2004; Pudovkin 2004; 

Roldugin & Tinsley 2004; Scafetta & West 2006; Haigh 2007; 

Burns et al. 2007, 2008; Cho & Chang 2008; Kniveton et al. 

2008; Meehl et al. 2009; Gray et al. 2010; Cho et al. 2012; 

Gray et al. 2013; Lee & Yi 2018; Muraki 2018). For example, 

the solar variability is associated with the El Niño-Southern 
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Oscillation (ENSO) variability (e.g., van Loon et al. 2007; van 

Loon & Meehl 2008; Meehl et al. 2008, 2009; Roy & Haigh, 

2010, 2012; Zhou & Tung 2010; Haam & Tung 2012), the 

Quasi Biennial Oscillation (QBO) (Labitzke 1987; Labitzke 

& van Loon 1988; Sagir et al. 2015), and the North Atlantic 

Oscillation (NAO) (Gray et al. 2013). Furthermore, solar 

activity is related to various types of extreme weather, such 

as tropical cyclones (Kim et al. 2017; Kim et al. 2018), severe 

droughts (Bhalme et al. 1983; Meshcherskaya & Blazhevich 

1997; Park & Chang 2013; Park et al. 2014), changes in 

the precipitation patterns of rainy seasons (Mazzarella & 

Palumbo 1992; Kavlakov 2005; Pérez-Peraza et al. 2008; Ho 

et al. 2016; Choi et al. 2017), and heatwaves (Coumou & 

Rahmstorf  2012). 

Low solar activity would allow a greater GCR influx 

into the Earth’s atmosphere. Consequently, more cloud 

condensation nuclei resulting from GCR via either the ion-

aerosol clear-sky mechanism or ion-aerosol near-cloud 

mechanism form to increase cloudiness and in turn affect 

the tropical cyclone activity. Another possible mechanism 

is that high solar activity results in warming of the lower 

stratosphere and the upper troposphere, decreasing the 

convective available potential energy and the intensity 

of tropical cyclones (Elsner & Jagger 2008; Hung 2013). 

Particularly, typhoons in the western North Pacific 

influencing the Korean peninsula are of great interest 

because typhoons occur here much more frequently than 

in any other tropical cyclone genesis basin. Thus, tropical 

cyclone activity over the Northwestern Pacific basin was 

examined to determine whether there is a long-term 

trend, and if so, whether it is modulated by solar activity 

(Kim et al. 2017; Kim et al. 2018). Kim et al. (2017, 2018) 

attempted to address questions regarding solar influences 

on tropical cyclone genesis in the Northwestern Pacific 

basin by analyzing locations where tropical cyclones form, 

reach their lowest central pressure, and downgrade back 

to a tropical depression. They found that tropical cyclones 

occurring in the solar maximum periods and in the solar 

descending periods have properties similar to those in El 

Niño periods. Unfortunately, however, their subsequent 

investigations show that that conclusion turns out to be 

inconclusive. Based on the linear correlation coefficients 

r between the locations of tropical cyclones and observed 

data of sunspot areas, they concluded that tropical cyclone 

properties appear weakly correlated or anti-correlated with 

the solar cycle, although some long-term trends can be 

observed. In spite of the fact that tropical cyclone activity 

seems to share periodicities with solar activity, they have 

also warned, with the wavelet transform method, that 

there is no evidence showing that tropical cyclone activity 

is causally related to solar activity, including positions of 

occurrence/development and other characteristics. This 

result essentially occurs because the wavelet transform 

method is inappropriate for searching for causality. 

In this paper, we investigate associations between the 

solar variability and teleconnection patterns, which are 

spatial and/or temporal climate anomalies connected to 

each other over a large distance, typically thousands of 

kilometers. Such a large-scale anomaly surely influences 

the atmospheric circulation and subsequent spatial 

distribution of the global pressure system, so that climate 

factors governing tropical cyclone genesis, movement, and 

recurvature locations, as well as lifetime, are changed (Choi 

& Moon 2012; Choi & Cha 2017; Choi et al. 2017). That is, 

unlike earlier approaches, we study a link between the Sun 

and a large-scale mode of climate variability, which may 

indirectly affect the Earth’s climate and weather, instead of 

a direct link between the Sun and terrestrial climate and 

weather. This is crucial in the sense that feedbacks of solar 

variability to an autogenic or internal process, such as a 

long-term variation, should receive attention because solar 

forcing as an ingredient of the climate system is nonlinear 

in nature. To find a resemblance in shape of two physical 

quantities, we have calculated the normalized cross-

correlations, defined by 

 ( ) ( ) ( )u t v t
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u vE E
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=  (1)
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where u∗(τ) is the complex conjugate of u(τ). For all t, 

|z(t)| ≤ 1. Note that the argument of w(t) is called the lag 

if it is positive, or the lead if it is negative. That is, if the 

argument of w(t) is positive, the first quantity follows 

the second quantity by the amount of its value, and vice 

versa. The correlation of a signal with itself is called the 

autocorrelation. The autocorrelation at zero lag corresponds 

to the linear correlation coefficient. This paper is organized 

as follows. We begin with a description of the data analysis 

in Section 2. We present and discuss the results in Section 3. 

Finally, we briefly summarize and conclude in Section 4.
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2. DATA

As a proxy of solar activity, we have taken the sunspot 

area and sunspot number data from the NASA Marshall 

Space Flight Center website (http://solarscience.msfc.nasa.

gov/greenwch.shtml). We extracted the daily sunspot area 

(in units of millionths of a hemisphere) and daily sunspot 

number during the period from 1977 to 2016, approximately 

spanning from solar cycles 21 to 24. The sunspot dataset 

is available as ASCII text files for both the Northern 

Hemisphere and the Southern Hemisphere, separately. To 

calculate the solar North–South asymmetry, we have used 

sunspot area data, defined by (AS − AN)/(AS + AN), where AS 

and AN are the sunspot area appearing in the solar Southern 

and Northern hemispheres, respectively. For the time-

series of the teleconnection indices, such as the Southern 

Oscillation Index (SOI) the NAO index, the Arctic Oscillation 

(AO) index, the Antarctic Oscillation (AAO) index, and the 

Pacific-North American (PNA) index, we have downloaded 

daily data from the NOAA website (https://www.ncdc.

noaa.gov/teleconnections), which provides various indices 

representing large-scale anomalies in space and time that 

control the variability of atmospheric circulation. Having 

downloaded all the daily data, we averaged those data yearly 

so that we can compute the normalized cross-correlations 

by year. We are interested in yearly values because climate 

indices primarily vary by season.

3. RESULTS AND DISCUSSION

In Fig. 1, from left to right, we show the normalized cross-

correlations of the total sunspot area, the total sunspot 

number, and the solar North–South asymmetry with the 

SOI index, respectively. According to the definition, when 

the correlation values are positive (negative), there is a 

positive (negative) correlation. When the argument of the 

function at extremum is positive, the first observable lags 

(or follows) the SOI index by that amount. Conversely, when 

the argument of the function at maximum (minimum) 

is negative, the first observable leads (or goes ahead of ) 

the SOI index by that amount. The SOI index is anti-

correlated with both solar activity and the solar North–

South asymmetry with a lag of ∼−3 years. Because the SOI 

index is based on the standardized difference between 

observed sea-level pressures in Tahiti and Darwin, the 

negative SOI index corresponds to the El Niño period. This 

result therefore means that the El Niño episodes likely occur 

three years after the solar maximum. This not only agrees 

with the fact that El Niño episodes likely occur around the 

solar maximum, but also explains why tropical cyclones 

occurring in the solar maximum periods and in El Niño 

periods appear similar (e.g., Kim et al. 2017; Kim et al. 2018). 

In Fig. 2, from left to right, we show the normalized cross-

correlations of the total sunspot area, the total sunspot 

number, and the solar North–South asymmetry with 

the NAO index, respectively. The NAO index is the sea-

level pressure difference between the Azores High and 

the Subpolar Low. The positive and negative phases are 

associated with the North Atlantic jet stream and storm 

tracks. When the NAO phase is positive, temperatures in the 

eastern Americas and northern Europe become high. The 

NAO index is weakly correlated with solar activity with a lag 

of ∼−1 year. However, it is very weakly correlated with the 

solar North–South asymmetry. This might reflect the fact 

that the climate of regions under the influence of the NAO, 

including Europe, is less sensitive to solar variability, even 

though some European countries experience severe winters 

during grand solar minima, such as the Maunder minimum 

(e.g., Eddy 1977). 

In Fig. 3, from left to right, we show the normalized cross-

correlations of the total sunspot area, the total sunspot 

number, and the solar North–South asymmetry with the 

AO index, respectively. The AO is a wind pattern circulating 

Fig. 1. Normalized cross-correlations of the total sunspot area, the total sunspot number, and the solar North–South asymmetry with the SOI 
index are shown from left to right, in order. The time series of data is taken during the period from 1977 to 2016. SOI, Southern Oscillation Index.
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counterclockwise around the North-polar region. It is 

sometimes referred to as the Northern Hemisphere annular 

mode (NAM). When it is positive, cold air across the polar 

region is confined. The AO index appears to be weakly 

correlated with solar activity, with a lag of ∼−1 year. It is 

anti-correlated with the solar North–South asymmetry with 

a lag of ∼−7 years. These results could mean that high solar 

activity may lead to a positive AO pattern, so that relatively 

warm winters in the Northern hemisphere occur one year 

after a solar maximum.

In Fig. 4, from left to right, we show the normalized cross-

correlations of the total sunspot area, the total sunspot 

number, and the solar North–South asymmetry with the 

AAO index, respectively. Similar to the AO, the AAO is 

defined as a belt of westerly winds around Antarctica. It 

is also known as the Southern Annular Mode (SAM). This 

may lead to ice shelf basal melt. The AAO index appears to 

be anti-correlated with solar activity and the solar North–

South asymmetry, with a lag of ∼−2 years. Note that this 

behavior is opposite to what is seen in Fig. 3 resulting from 

the AO index. It is thus interesting to investigate the cause of 

this difference in view of the fact that recent global warming 

apparently leads to warming in the Northern hemisphere 

and somewhat different effects in the Southern hemisphere.

In Fig. 5, from left to right, we show the normalized 

cross-correlations of the total sunspot area, the total 

sunspot number, and the solar North–South asymmetry 

with the PNA index, respectively. The PNA pattern is 

Fig. 2. Similar to Fig. 1, except the NAO index is used instead of the SOI index. NAO, North Atlantic Oscillation; SOI, Southern Oscillation Index.

Fig. 3. Similar to Fig. 1, except the AO index is used instead of the SOI index. AO, Arctic Oscillation; SOI, Southern Oscillation Index.

Fig. 4. Similar to Fig. 1, except the AAO index is used instead of the SOI index. AAO, Antarctic Oscillation; SOI, Southern Oscillation Index.
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associated with the East Asian jet stream. When the PNA 

pattern is in a positive phase, the temperature in western 

Canada is high. The PNA index appears to be only slightly 

correlated with sunspot area/number, or the North–South 

asymmetry. Again, as in the earlier cases seen in Figs. 2–4, 

this finding emphasizes that responses of terrestrial climate 

and weather to solar variability are local in space and 

demonstrates that the solar effect on the terrestrial climate 

is not straightforward; rather, feedbacks play a critical role. 

In Fig. 6, for comparison, we show the normalized 

cross-correlations resulting from some combinations of 

teleconnection indices. On the upper right corner in each 

panel, the chosen computational indices are indicated. 

Because teleconnections influencing the weather pattern 

were first noticed in the late 19th century, the correlation 

between their time series has been probed, and spatial 

patterns have been compared. Associated teleconnections 

are now well known. For example, the PNA pattern is 

strongly affected by the El Niño phenomenon, and NAO 

phases are related to AO patterns. As seen in Figs. 1–6, 

however, the correlations between solar activity and 

teleconnection indices are as good as correlations resulting 

from the teleconnection indices themselves. Hence, 

although the normalized cross-correlations of the total 

sunspot area, the total sunspot number, and the solar North–

South asymmetry with teleconnection indices are marginal, 

the normalized cross-correlations of solar variability with 

teleconnection indices cannot be ignored in comparison 

with those of the teleconnection indices themselves.

4. SUMMARY AND CONCLUSIONS

Sunspot activity is associated with terrestrial weather 

and climate. It operates in a complex way, so that the 

resulting effects are nonlinear and local in nature. It may 

directly modulate the system of terrestrial climate via 

changes in the Earth’s thermal system, or Earth’s magnetic/

electric systems. More importantly, solar variability may 

be linked to a largescale mode of climate variability, which 

may indirectly affect the Earth’s climate and weather. We 

consider this a crucial matter because feedbacks of solar 

forcing on an autogenic or internal process such as long-

term variation should be taken into account in the sense 

that a solar variability as an ingredient of the terrestrial 

climate system is nonlinear in nature. In this paper, we 

have examined associations between solar variability and 

teleconnection patterns, which are largescale spatial and/

or temporal climate anomalies connected to each other. 

We have calculated the normalized cross-correlations of 

the total sunspot area, the total sunspot number, and the 

solar North–South asymmetry with teleconnection indices 

including the SOI, the NAO index, the AO index, the AAO 

index, and the PNA index during the period from 1977 to 

2016, approximately spanning from solar cycles 21 to 24. 

As a result, we have found that 

(1) the SOI index is anti-correlated with both solar 

activity and the solar North–South asymmetry, with a lag of 

∼−3 years. This implies that El Niño episodes likely occur 

three years after a solar maximum. This fact both agrees 

with the fact that El Niño episodes likely occur around the 

solar maximum and explains why both tropical cyclones 

occurring in the solar maximum periods and in El Niño 

periods appear similar. 

(2) Other teleconnection indices, such as the AO index, 

the AAO index, and the PNA index, are weakly or only 

slightly correlated with solar activity. This fact emphasizes 

that the responses of terrestrial climate and weather to solar 

variability are local in space and demonstrates that the solar 

effect on the terrestrial climate is not straightforward; rather, 

feedbacks play a crucial role. 

(3) The correlations between the indices of solar activity 

and teleconnection are as good as the correlations resulting 

from the teleconnection indices themselves. Hence, 

although the normalized cross-correlations of the total 

sunspot area, the total sunspot number, and the solar 

Fig. 5. Similar to Fig. 1, except the PNA index is used instead of the SOI index. PNA, Pacific-North American; SOI, Southern Oscillation Index.
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North–South asymmetry with teleconnection indices 

are marginal, the normalized cross-correlations of solar 

variability with teleconnection indices cannot be ignored in 

comparison with the normalized cross-correlations of the 

teleconnection indices themselves.
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