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Being a torque free motion of the rotating Earth, Chandler wobble is the major component in the Earth’s polar motion with 
amplitude about 0.05-0.2 arcsec and period about 430-435 days. Free core nutation, also called nearly diurnal free wobble, 
exists due to the elliptical core-mantle boundary in the Earth and takes almost the whole part of un-modelled variation of the 
Earth’s pole in the celestial sphere beside precession and nutation. We hereby present a brief summary of their theories and 
report their recent features acquired from updated datasets (EOP C04 and ECMWF) by using Fourier transform, modelling, 
and wavelet analysis. Our new findings include (1) period-instability of free core nutation between 420 and 450 days as well as 
its large amplitude-variation, (2) re-determined Chandler period and its quality factor, (3) fast decrease in Chandler amplitude 
after 2010.
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1. INTRODUCTION

Chandler wobble and free core nutation are two major 

modes of perturbation in the Earth rotation. Earth rotation 

status needs to be known for the coordinate conversion 

between celestial reference frame and terrestrial reference 

frame. Due mainly to the tidal torque exerted by the 

moon and the sun on the Earth’s equatorial bulge, the 

Earth undergoes precession and nutation. Modeling of 

precession and nutation has become rigorous ever since 

the first development of Woolard and later one of Kinoshita 

(Moritz & Mueller 1988). The Earth’s reference pole, which 

is the origin of the geographic coordinates; latitude and 

longitude, was determined in the beginning of 20th century. 

However, the Earth’s rotational pole moves in time on 

the surface of the Earth, and this motion cannot be easily 

modelled because of nonlinear behavior of atmosphere 

and other various movements in the Earth. So called polar 

motion refers to the position of the true spin rotational pole 

denoted as (xp, yp). Official observation of the polar motion 

started more than a century years ago. Chandler wobble 

is also called Eulerian free nutation, because Euler early 

predicted its existence. Chandler wobble, along with annual 

wobble, is the largest component of the polar motion, and 

its period is about 430-435 days. Theoretical investigations 

and observations on its characters – period, quality factor, 

and its excitation source have been made repeatedly with 

improvements (Gross 2009). Poinsot diagram of Chandler 

wobble and the locus of angular velocity vector on the Earth 

during one Chandler period are illustrated in Fig. 1 (left 

side). The body cone rotates around space cone every day. 

On the Earth’s surface the pole of rotation slowly moves 

counterclockwise around the symmetry axis of the Earth 

with the Chandler period – here annual wobble or others 

are not considered. Smith (1977) clearly confirmed the 

definition of wobble and nutation: ‘wobble’ is the angle 

between CIP and symmetry axis, and ‘nutation’ is the angle 

of the symmetry axis from angular momentum vector. This 

definition was first made by Munk & MacDonald (1960).

Not only the pole position changes on the Earth’s surface, 

but also exist small perturbation in the pole position on the 

celestial sphere - imposed on the known precession and 
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nutation. This un-modelled error has been suspected to 

be associated with the free core nutation, which is another 

intrinsic mode of Earth’s rotational perturbation due to 

the mismatch between the two each rotational axes of the 

Earth’s mantle and core. After successful VLBI operation as 

well as accurate measurement of tidal gravity since 1980s, 

free core nutation has become clearly observable. The 

period of free core nutation has been reported to be around 

430 days in the celestial sphere, however, free core nutation 

appears to be a diurnal variation for the observers on the 

Earth. Therefore it is also called nearly diurnal free wobble. 

Poinsot diagram of free core nutation and its diurnal locus 

of angular velocity vector on the Earth are illustrated in Fig. 

1 (right side). The body cone spins clockwise nearly daily 

and rotates clockwise slowly with contacting the space cone: 

nearly diurnal free wobble. In this case the nutation angle is 

much larger than wobble (400 – 460 times) and body cone 

slowly moves with contacting the space cone with much 

longer period (again 400 – 460 times): free core nutation.

The IERS recommendation of the coordinate conversion 

from Celestial Reference Frame to Terrestrial Reference 

Frame is given as follows (Petit & Luzum 2010), 
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where; (1) X and Y are coordinates of the Earth pole in the 

celestial sphere - representing precession and nutation, 

(2) θ, s, and s' are Earth’s spin rotation angle and two small 

correction terms, (3) xp and yp are called polar motion and 

denote true pole position on the Earth’s surface. More 

description of this coordinate transformation is given in the 

appendix.

B eing the main comp onents  in  p ole  p osi t ional 

p e r t u r b a t i o n  o n  t h e  E a r t h  a n d  c e l e s t i a l  s p h e re, 

Fig. 1. Schematic illustrations of Chandler wobble and free core nutation (nearly diurnal free wobble). Upper ones are 
Poinsot diagrams, while lower ones are pole traces on the Earth. Daily rotation is described by the rotating motion of 
body cone around space cone. Chandler wobble is a prograde motion around symmetry axis of the Earth (period about 
435 days). Nearly diurnal free wobble is the retrograde daily motion of the pole on the Earth, while the Earth’s symmetry 
axis slowly rotates clockwise with maintaining the angles unchanged – the latter is free core nutation. For both cases, 
wobble is the angle between CIP and the Earth’s symmetry axis, and nutation is the angle of the symmetry axis from 
angular momentum vector (space fixed).
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investigations have been carried on Chandler wobble and 

free core nutation. One good summary about Chandler 

wobble was given by Gross (2009). An earlier workshop on 

Chandler wobble held in 2004 was a special and fruitful 

occasion dealing with diverse related disciplines (Plag et 

al. 2005). Mechanical existence of Chandler wobble mode 

itself is due to the equatorial bulge of the Earth, as early 

studied by Euler. Its reality was later confirmed by Chandler, 

while the period discrepancy of 14 months from 305 day 

was interpreted as the influence of mantle elasticity by 

Newcomb. Dahlen’s theoretical work was an important 

advance to explain the role of the global oceans increasing 

the period of Chandler wobble by 28 days. There have been 

controversies on the excitation mechanism of Chandler 

wobble, however, as accurate datasets accumulate on the 

global atmosphere and ocean, it is now widely accepted that 

Chandler wobble is being excited mainly by the changes 

in the states of atmosphere and ocean. Water and glacial 

mass redistribution on the surface and shallow crust of the 

Earth do another role in the polar motion. Earthquakes 

are no longer regarded as appreciable energy source of 

Chandler wobble (Gross 2009; Chung & Na 2016). Accurate 

estimation of Chandler wobble period and quality factor 

has long been attempted repeatedly by investigators using 

different approaches. Statistical methods were employed 

early, but after global data coverages, comparison between 

observation and model has become feasible. Furuya & Chao 

(1996) estimated Chandler period and quality factor as 433.7 

days and 49 by minimizing the residual power between 

geodetic excitation function and atmospheric excitation. 

Gross elaborated and attained 431.9 days and 83 (Plag et al. 

2005). There have been other type approaches, which led 

more or less similar results (see Plag et al. 2005; Gross 2009).

Theoretical studies of free core nutation started long ago 

by Poincare, Hough and others (Moritz & Mueller 1988), 

and later important step was made by Sasao (1980). The 

torque due to misalignment between the rotational axes of 

the mantle and the liquid core is known to be the cause of 

free core nutation. Unlike Chandler wobble excitation, the 

formulation of free core nutation excitation function is not 

clearly known. However, it is believed that free core nutation 

is also excited by atmosphere and ocean. Observation of 

free core nutation has been made either by accurate gravity 

observation or VLBI data analysis. Unlike its predicted 

period as 460 days by Sasao, studies repeatedly confirmed 

free core nutation period at around 430 days with small 

deviations (for example, Rajner & Brzezinsky (2017), Krasna 

et al. (2013), Defraigne et al. (1994) and dozens others cited 

in their references). On the contrary, large variation of the 

free core nutation period has been reported by Cummins 

& Wahr (1993) and recently by Gubanov (2010). Chao and 

Hsieh recently reported its period as 445 days (Chao & Hsieh 

2015). Reported value of nearly diurnal free wobble Q varied 

largely from 1000 to several thousands. It is noted here that 

quality factor of free core nutation and that of nearly diurnal 

free wobble should be discerned, even though the two are 

identical phenomenon viewed from different reference 

frames: Q
fcn

 T
fcn

 = Q
ndfw

 T
ndfw

.

Deep Earth inside processes are also candidates of some 

parts of Earth rotation variation – particularly decadal and 

other long periodic variations. All the dynamic processes of 

the Earth - atmospheric/oceanic/deep inside - eventually 

affect both Chandler wobble and free core nutation as 

well as other type perturbations in different amounts. In 

this article, we briefly summarize the theories of Chandler 

wobble and free core nutation. Also we report a few 

interesting results of our spectral analysis and modelling on 

them based on recent datasets. 

2. BRIEF THEORETICAL SUMMARY

Except glacial isostatic adjustment and other slow Earth 

deep interior processes, overall mechanical response of the 

rotating Earth in the range of Chandler wobble and free core 

nutation can be explained by using linearized equation. 

This linearization holds true, even though the equations 

of hydrodynamic motions in the atmosphere or ocean are 

inherently nonlinear. In this section we summarize the 

theory of perturbation mode in the Earth’s spin rotation, 

which was originally given by Moritz & Mueller (1988).

Starting with rigid Earth we have simple equation for 

perturbation in its spin rotation as follows.
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Insert Eq.(2) into Eq.(1), then we find (with setting θ̇ = 0),
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After rewriting the first two of Eq.(3) with defining Ωr = 

0r
C A

A
ω−

Ω = ω
0
 and complex angle θ = θ

1
+iθ

2
, we find

 0 0( ) 0r riθ ω θ ω θ+ −Ω +Ω =   (4)

Assuming the solution for the Eq. (4) as θ ∝ eiΩt, then 

we have the resulting condition for Ω as Ω2+(ω
0
-Ωr)-r

0
 = 

0. Two solution of Ω are found as Ω = Ωr = 0r
C A

A
ω−

Ω = ω
0
 and Ω = 

-ω
0
. These two may be compared with the frequencies of 

Chandler wobble and retrograde diurnal free wobble.

Now we assume the Earth is composed of rigid mantle 

and liquid core. Also we assume the core-mantle boundary 

is slightly elliptical so that it is expressed as follows.
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3
), then the kinetic energy associated with the 

perturbed motion can be written as
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Likewise we have following equation for the core free 

motion as
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From the third equations of the two sets, we have 3[( ) ] 0cC C
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other equations can be rewritten as follows.
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Assuming oscillatory solution for ω and x (∝ eiΩt), Eq.(5) is 

expressed in matrix form as
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Then, for existence of nontrivial solution, we have 

following condition.
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The frequency Ω of the mode of our interest can be found 

by using perturbation scheme, for the ellipticity ε is small 

(less than 1 percent). Taking ε = 0 in Eq. (7), we find two 

solutions of zero order as follows.
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= 1/400 and C/Cm = 1.13, we find εC/Cm = 0.0028.
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Sasao (1980) extended this theory by including elasticity 

of mantle. His final equation for the eigenfrequency of 

perturbation mode of Earth rotation is given as follows.

 

Corresponding solutions of Ω are found as follows.

 1 0( )
m

A e
A

κ ωΩ = − , 2 0(1 ( ) )
m

A
A

ε β ωΩ = − + −  (11)

The values of parameters used above are known as e = 

0.00329, ε = 0.00252, κ = 0.00105, β = 0.00063. Therefore, the 

frequencies are Ω
1
 = 0.00253ω

0
 and Ω

2
 = -1.00213ω

0
. The 

period of the wobble corresponding to Ω
1
 = 0.00253ω

0
 is 396 

days, however, the effect of ocean is to increase this value by 

28 days. Then theoretical value of Chandler period becomes 

424 days. Also the frequency of second mode (nearly diurnal 

free wobble) is Ω
2
 = -1.00213ω

0
, while its apparent frequency 

to the inertial observer in space (free core nutation) should 

be -1.00213ω
0
, of which period is about 470 days.

3. DATA ANALYSIS

For inspection of recent features of Chandler wobble 

and free core nutation, we used IERS EOP C04 time series 

(January 1962 - August 2018), which contain the dataset of 

polar motion and LOD as well as the celestial pole offset; 

δX and δY. We evaluated atmospheric excitation function 

by using the global ECMWF interim dataset of barometric 

pressure and wind distribution.  

3.1 FEATURES OF CHANDLER WOBBLE

Polar motion is referred to the (xp, yp), which is the 

coordinate of Earth’s spin angular velocity (termed as CIP) with 

respect to its nominal position of 1900-1905. The Fourier power 

spectrum of the polar motion is shown in Fig. 2. To enhance 

the resolution and fidelity of the spectrum we separated 

the daily-basis dataset into four subsets of day number n = 

4k, 4k+1, 4k+2, and 4k+3, and then added all the each four 

corresponding spectra. Obviously Chandler and annual wobble 

take the dominant parts in the spectrum, and there also exist 

other components of which periods are about 487, 340, about 

300 days and others (Fig. 2a). Period of maximum power in the 

Chandler band was found as 434.0 days (Fig. 2b). From analysis 

on power spectrum in frequency domain, its center period 

was found as 434.3 days (423.6d < T < 445.6d as ±1σ range). 

Assuming white spectral excitation, one may deduce the quality 

factor from the spectrum. We found corresponding value as 

Q = 30. Chandler wobble components acquired by filtering in 

the frequency domain from IERS EOP C04 data are shown in 

Figs. 3a and 3b. It is noticeable that the amplitude of Chandler 

wobble has been much reduced since 2010. After 2015, its 

amplitude is less than 30 milliarcsec. Wavelet spectrum of 

Chandler wobble time series has been attained by using Morlet 

wavelet and is illustrated in Fig. 4. In the figure, a slight variation 

of temporal period of Chandler wobbling motion can be seen. 

3-dimensional surface illustration wavelet spectrum describes 

evident Chandler wobble amplitude variation together with its 

slight periodicity variation. 

By comparing geodetic excitation function derived from 

polar motion and atmospheric excitation function derived 

from ECMWF dataset in frequency domain of Chandler band, 

we acquired estimate of Chandler period and quality factor. 

Fig. 2. Polar motion power spectra: (a) Fourier power spectrum of EOP C04 (Jan 1962 – Aug 2018) shown on frequency axis, (b) Same power spectrum 
closely shown on period axis (Chandler band only). Average Chandler period is found 434.3 days.
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Three different criteria have been tested: (a) minimum sum 

of squared difference (Gross method; in Plag et al. 2005), (b) 

minimum sum of power difference (Furuya & Chao method; 

Furuya & Chao, 1996), (c) minimum sum of power difference 

plus total power difference. Results are followings: (a) T = 

431.0 days & Q = 265, (b) T = 432.5 days & Q = 47, (c) two 

sets T = 432.3 days & Q = 45 and T = 433.1 days & Q = 43. The 

results are also illustrated in Fig. 5. Simple average of these 

may be taken as T = 432.2 days and Q = 100.

3.2 FEATURES OF FREE CORE NUTATION

The celestial pole offset; δX and δY since 1984 are given 

in EOP C04 dataset. In Fig. 6, the data and the free core 

nutation as acquired by filtering on the frequency domain 

are shown together. Relatively large error in δX and δY 

exist in the early time before 1990. Basically the celestial 

pole off set has been determined from vast amount of 

VLBI observations through lengthy reduction procedure 

including the comparison with model of the Earth’s 

precession and nutation. 

The Fourier power spectrum of the celestial pole offset 

is shown in Fig. 7. For better resolution of the spectrum we 

again used four sets of day number = 4k, 4k+1, 4k+2, and 

4k+3, and then added the each four corresponding spectra. 

From the spectra, it is clear that free core nutation takes 

Fig. 3. Chandler wobble since 1962: extracted from EOP C04, (a) Two components xp and yp of Chandler wobble [unit: arcsec], (b) Same time 
series illustrated as 2-dimensional Chandler wobbling motion in time passage.  

Fig. 4. Morlet wavelet spectrum of Chandler wobble: (a) simple wavelet power spectrum of Chandler wobble with equal-power lines, (b) 
same spectrum illustrated as three dimensional surface in time passage.
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more than 95 percent of total power, however, small content 

of 18.6 year and 1 year periodicities as well as other weak 

periodicities can be seen (Fig. 7a). These minor contents 

can be regarded as minute traces of residual forced nutation 

- not compensated by the model. Fourier spectrum shows 

that spectral peaks are split into three ones, of which 

periods are 448, 423, and 400 days and others (Fig. 7b). Its 

center period was found as 435.6 days (409.2d < T < 465.6d 

as ±1σ range) from the distribution of power in frequency 

domain. Assuming white spectral excitation, we found the 

quality factor of free core nutation as Q = 8 from the power 

spectrum. Corresponding quality factor of nearly diurnal 

free wobble follows as Q = 3600.

Wavelet spectrum of celestial pole offset time series has 

been attained by using Morlet wavelet and is illustrated in 

Fig.8. Large variations of both the temporal amplitude and 

periodicity of free core nutation are noticeable. 3-dimensional 

illustration gives panoramic view of these features.

4. DISCUSSION AND CONCLUSION

As shown in Fig. 3a the amplitude of Chandler wobble 

kept on decreasing since 1990 and is now one third of 

its average amount or less. Though not shown here, 

atmospheric excitation has not so decreased with such 

large reduction at the same time, therefore, other source 

of excitation must have affected significantly. From the 

comparisons between geodetic excitation and atmospheric 

excitation, the period and Q-value of Chandler wobble were 

determined as T = 432.2 days and Q = 100 in this study, 

while direct interpretation on the power spectrum led T = 

434.3 and Q = 30. This discrepancy could be partly due to 

un-modeled oceanic excitation.

Average period of free core nutation was found as T = 

435.6 days in the given time span (1984 – 2018), however, 

its periodicity is found unstable with variations over 50 

days. Unlike Chandler wobble, we have not attempted 

to infer the period and Q-value of free core nutation by 

excitation comparison, for its excitation function is not 

quite accurately formulated. From the power spectrum the 

quality factor of free core nutation was read as Q = 8, which 

corresponds to nearly diurnal free wobble quality factor 

as Q = 3600. Morlet wavelet spectrum well describes the 

amplitude and period variations of free core nutation.

Existence of free core nutation is due to misalignment 

Fig. 5. Estimates of Chandler period and quality factor acquired by least square error of spectrum in Chandler band. Three kinds of criteria used: (a) 
minimum sum of squared difference (Gross method), (b) minimum sum of power difference (Furuya & Chao method), (c) minimum sum of power difference 
plus total power difference. Each identified period and Q-value set for minimum square error are T = 431.0 days & Q = 265, T = 432.5 days & Q = 47, and two 
sets T = 432.3 days & Q = 45 and T = 433.1 days & Q = 43.

Fig. 6. The celestial pole offset; δX and δY since 1984 determined from 
VLBI observation. Free core nutation component acquired by filtering is 
imposed on the data [unit: milliarcsec].
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of rotation axes of mantle and liquid core associated with 

the ellipticity of core-mantle boundary (ε = 0.00252 in 

Eq. 10). Thus its large period variation is quite possibly 

caused by a certain change in the core-mantle boundary. 

More investigations are needed in both its theory and data 

analysis. It is also desirable to have reliable formulation for 

excitation function of free core nutation.
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APPENDIX: Celestial/Terrestrial Coordinates – 

Precession, Nutation and Polar Motion

Coordinate transformation from Celestial Reference 

Frame to Terrestrial Reference Frame has been mostly 

expressed as follows (IAU 2000A), while the transform given 

in the introduction is equivalent one using two celestial pole 

coordinate X and Y for precession plus nutation. 

 
1 1

2 2

3 3

pm spin nut prec

Terrestrial Celestial

x x
x R R R R x
x x

   
   =   
      

 (A1)

Rprec, Rnut, Rspin, and Rpm in Eq.(A1) are each rotation 

matrices corresponding to the precession, nutation, Earth’s 

spin, and polar motion. 

 
3 2 3( ) ( ) ( )precR R z R Rθ ζ= − − 

1 3 1( ) ( ) ( )nutR R R Rε ε ψ ε= − − ∆ −∆ 
3 ( )spinR R GAST= 

2 1( ) ( )pm p pR R x R y= − −

The three angles of the precession matrix; Rprec = R
3
(-z)

R
2
(θ)R

3
(-ζ) are given as follows.

ζ =  2.5976176" + 2306.0809506"T + 0.3019015"T2 

 + 0.0179663"T3 - 0.0000327"T4 - 0.0000002"T5 

θ =  2004.1917476"T - 0.4269353"T2 - 0.0418251"T3 

 - 0.0000601"T4 - 0.0000001"T5

z =  -2.5976176" + 2306.0803226"T + 1.0947790"T2 

 + 0.0182273"T3 + 0.0000470"T4 - 0.0000003"T5 

For precession, one may assume the lunar and solar 

masses as circularly distributed around the Earth like 

donuts. In fact, the moon and the sun give periodic torques 

as oscillatory perturbations and lead Earth nutation. By 

analogy of harmonic oscillator to periodic forces, amplitude 

Fig. A1. Earth’s precession represented by three angles ζ, θ, and z. 
Precession matrix is given as R3(-z)R2(θ)R3(-ζ). 
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of long period nutation is larger than short period one.

In Fig. A2, the largest nutation (18.6 year period: the 

retrograde precession of the lunar orbital plane) is illustrated 

together with the precession. For different nutation 

components of same origin (lunar or solar), lower frequency 

nutation has larger amplitude due to the inverse frequency 

dependence of nutation angular momentum; Ln = |L⃑n| = |τn|/

ωn . Semiannual nutation is roughly six times larger than 

fortnightly one (lunar tidal force is about twice larger). Due 

to symmetric nature of tidal force, semi-annual nutation 

is of larger amplitude than annual nutation (particularly 

for Δε), and fortnightly nutation amplitude is larger than 

monthly. If the lunar/solar orbits were completely circular, 

then the monthly and annual nutation will no longer exist. 

The two angles Δε and Δψ, illustrated in Fig. A3, represent 

nutation and largest nutation components are listed in the 

following table. For comparison the amplitudes of four 

largest nutation are shown in Fig. A4. 

Transformation matrix of the nutation described by 

Δε and Δψ is given as Rnut = R
1
(-ε-Δε)R

3
(-Δψ)R

1
(ε) . Next to 

the largest 18.6 year nutation, large ones are semiannual, 

fortnightly, annual and monthly nutation. Mathews 

model for the precession and nutation has been adopted 

by International Astronomical Union (IAU) as its current 

standard model (Mathews et al. 2002).

Greenwich Apparent Sidereal Time (GAST) is defined 

as GAST = GMST + Δψ cos ε, where Δψ cos ε is the nutation 

of right ascension, while GMST is the Greenwich Mean 

Sidereal Time in radian defined as GMST = GMST
0
 + αUT1 

with GMST
0
 given in second as follows.

GMST
0
 =  24110.54841+8640184.812866T+0.093104T2 

 -6.2×10-6T3 (second) 

where T is time in Julian century (36525 days) from J2000.0, 

and α is the sidereal time conversion factor defined as α = 

1.002737909350795+5.9006×10-11T-5.9×10-15T2.

Unlike other Earth rotation parameters above, two 

coordinates (xp, yp) of the instantaneous Earth pole offset 

cannot be accurately predicted in advance, therefore they 

are determined through observation. The coordinate 

transformation from Terrestrial Reference Frame to Celestial 

Reference Frame can be expressed as inverse of the formula 

(A1).

Fig. A2. 18.6 year nutation superposed on the precession. Approximate 
locus of celestial intermediate pole for about 1.5 nutation period is drawn.

Fig. A3. Nutation angles Δε and Δψ. 

Fig. A4. The nutation ellipses of four major components; 18.6 year, 
semiannual, fortnightly, and annual. A scale arrow of 5 arcsec is shown.

Table 1. Amplitudes of six largest nutation components [unit: 
milliarcsec]

period 
(day)

nutation in 
obliquity Δε

nutation in 
longitude Δψ sin ε remark

6798.4 9203 6858 lunar orbital precession
365.3 5 57 annual
182.6 574 526 semi annual

27.6 1 28 monthly
13.7 98 91 fortnightly

9.1 13 12 modulated


