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The solar magnetic field plays a central role in the field of solar research, both theoretically and practically. Sunspots are an 
important observational constraint since they are considered a discernable tracer of emerged magnetic flux tubes, providing 
the longest running records of solar magnetic activity. In this presentation, we first review the statistical properties of the 
latitudinal distribution of sunspots and discuss their implications. The phase difference between paired wings of the butterfly 
diagram has been revealed. Sunspots seem to emerge with the exponential distribution on top of slowly varying trends by 
periods of ~11 years, which is considered multiplicative rather than additive. We also present a concept for the center-of-
latitude (COL) and its use. With this, one may sort out a traditional butterfly diagram and find new features. It is found that the 
centroid of the COL does not migrate monotonically toward the equator, appearing to form an ‘active latitude’. Furthermore, 
distributions of the COL as a function of latitude depend on solar activity and the solar North-South asymmetry. We believe 
that these findings serve as crucial diagnostic tools for any potential model of the solar dynamo. Finally, we find that as the 
Sun modulates the amount of observed galactic cosmic ray influx, the solar North-South asymmetry seems to contribute to the 
relationship between the solar variability and terrestrial climate change.
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1. INTRODUCTION

The Sun, the nearest star to us, supports life on the Earth 

in such a way that it provides energy required by living 

organisms, while simultaneously posing a threat by emitting 

hazardous high-energy particles onto the terrestrial surface. 

The invisible solar magnetic field modulates its perceivable 

effects in time and space, which manifests itself as all the 

phenomena on the solar surface, including sunspots, faculae, 

coronal mass ejection, solar flares, and prominences (Choi 

et al. 2017). It also contributes to regulating the structure 

and dynamics in the interior of the Sun in the sense that the 

strength of the convective flows or overshooting should be 

consistent with the distribution of the deep-rooted large-

scale magnetic field. This is a part of the reason why much 

recent effort in solar research is focused on the configuration 

and evolution of the solar magnetic field. Furthermore, 

our understanding of the magnetism of cool stars is an 

extrapolation of our knowledge of the Sun. Though for some 

scientists, ensembles of cool stars would supply information 

on the solar magnetic field, demanding observations on a 

very long timescale, this fact itself states that solar magnetism 

can be a prototype of that of a cool star. 

The solar dynamo, in which the magnetic field is maintained 

by its interaction with the sheared motion of conducting 

plasma in the interior, acting in the tachocline between 

the radiative core and the convective envelope, is generally 

accepted as the source of the Sun’s magnetic field (Parker 

1955; Babcock 1961; Leighton 1969). In the solar dynamo, 

differential rotation and convective flows are considered to 

be the most important ingredients (e.g., Parker 1970). Rising 

through the convection zone due to magnetic buoyancy 

under the Coriolis effect, magnetic flux tubes, stretched in 

the toroidal direction by differential rotation, emerge at the 

visible solar surface as a magnetic loop. Footpoints of the 

loop are visible as sunspots of bipolar active regions in the 



56https://doi.org/10.5140/JASS.2018.35.2.55

J. Astron. Space Sci. 35(2), 55-66 (2018)

photosphere. Theoretically, the solar dynamo can be reckoned 

as a solution of the magnetohydrodynamics (MHD) equations 

for which the magnetic energy is nontrivial as time goes to 

infinity. The traditional mean-field dynamo model based on 

the Parker mechanism has been mathematically formulated, 

first by Krause & Rädler (1980), successfully explaining basic 

observational features. The solution of such αΩ-dynamos 

represent latitudinally propagating waves equatorward or 

poleward, dependent on the sign of α∂Ω/∂r (e.g., Yoshimura 

1975; Choudhuri et al. 1995; Nandy & Choudhuri 2001; 

Kitchatinov 2002). In this kind of classical dynamo model, 

however, there are problems. For instance, the efficiency in 

creating the migration of the dynamo wave is lower than the 

observed latitude drift of the sunspot zone. Thus, various 

versions of the dynamo theory have been developed for 

overcoming problems and meeting observational constraints. 

Our understanding is, as pointed out, constrained by differ-

ent observations of the magnetic field on the solar surface. 

Although observations of the solar magnetic field mostly 

refer to measurements based on the cyclotron resonance, the 

Hanle effect, and the Faraday rotation, as well as the Zeeman 

effect (e.g., Howard 1974; Antonucci et al. 1990; Mouradian & 

Soru-Escaut 1991; Knaack et al. 2004, 2005), the recording of 

magnetic proxies, such as the number or the area of sunspots 

(Newton & Milsom 1955; Roy 1977; White & Trotter 1977; 

Swinson et al. 1986; Vizoso & Ballester 1990; Schlamminger 

1991; Yi 1992; Carbonell et al. 1993; Verma 1993; Oliver & 

Ballester 1994; Krivova & Solanki 2002; Li et al. 2002; Temmer 

et al. 2002; Vernova et al. 2002; Knaack et al. 2004; Ballester 

et al. 2005), sunspot groups (Brajša et al. 2002; Berdyugina & 

Usoskin 2003; Forgács-Dajka et al. 2004), the flare occurrence/

index (Roy 1977; Ichimoto et al. 1985; Verma 1988; Garcia 

1990; Verma 1993; Ataç & Özguç 1996; Li et al. 1998; Ataç & 

Özguç 2001; Temmer et al. 2001; Joshi & Joshi 2004; Joshi 

& Pant 2005), the coronal green-line (Waldmeier 1971; 

Özgüç & Ücer 1988; Tritakis et al. 1988), and prominences/

filaments (Hansen & Hansen 1975; Vizoso & Ballester 1989; 

Duchlev & Dermendjiev 1996; Duchlev 2001; Gigolashvili 

et al. 2005), have been routinely conducted in a traditional 

way. Particularly, sunspot observations provide the longest 

running records of solar magnetic activity (e.g., Schwabe 1843; 

Carrington 1860; Maunder 1904). It should be worthwhile 

to note that their magnetic nature has only been known as a 

source of the sunspot phenomenon since Hale first measured 

the magnetic field in sunspots (Hale 1908), although sunspots 

have been extensively monitored for longer than 400 years.

Sunspots, whose umbra intensity is approximately 20–30 

% that of the quiet Sun, are the most readily visible signs of 

concentrated solar magnetic fields. Since sunspots are formed 

as soon as the magnetic tube emerges from the solar surface, 

they can be considered tracers of emerged magnetic flux tubes. 

At the center of a sunspot, the magnetic field line is almost 

vertically aligned, with a field strength of about 2,500–3,500 G. 

Long-term observations of sunspots indicate that solar activity 

as a time series shows various periodicities, such as ~11 years 

(Schwabe 1843; Maunder 1904), ~80–90 years (Gleissberg 

1971), ~1.3 years (Howe et al. 2000; Krivova & Solanki 2002; 

Obridko & Shelting 2007; Kim & Chang 2011; Cho et al. 2014), 

~154 days (Rieger et al. 1984), ~51, 78, 104, and 129 days 

(Bai & Sturrock 1991, 1993). In addition to variable sunspot 

records in time, the latitudinal position of sunspots with time 

provides invaluable information about the physical processes 

that generate the solar magnetic flux and induce its evolution. 

Although sunspots seem to emerge stochastically at any 

latitude lower than ~±40°, locations of sunspots are drifting 

equatorward from the mid-latitudes as a solar cycle proceeds. 

This behavior forms a well-known butterfly diagram (Maunder 

1904), which has become a widely-used tool for a concise 

description of the sunspot zone evolution. One thing that must 

be kept in mind when statistically comparing a theoretical 

model with the observed butterfly diagram, however, is that the 

butterfly diagram does not consider the sunspot lifetime nor 

the spatial size. Since all sunspots are dealt equally, regardless 

of their temporal and spatial dimension, the conventional 

butterfly diagram is likely to be overwhelmed by numerous 

and yet small sunspots, which are distributed over wider 

ranges than large ones (Ternullo 2007a; Cho & Chang 2011). 

This aspect is easy to understand if one notes that the smallest 

65 % of the sunspots comprises only up to ~10 % of the total 

spotted area (Ternullo 2007b).

This review article is aimed at both the young student who 

is about to enter the field of solar research and space physicists 

and astronomers in other possibly related fields. The scope 

of this article and the provided references should not be 

considered comprehensive nor complete. Nonetheless, here, 

we would like to present the observed spatial distribution of 

sunspots, which exhibits a North-South asymmetry, and discuss 

its statistical properties. Its periodicity is also summarized. We 

would further introduce another way to form a butterfly diagram 

demonstrating interesting features. We believe that any potential 

model of the solar dynamo must be capable of explaining the 

butterfly diagram and its properties since it provides clues and 

diagnostic tools on the structure and evolution of the solar 

magnetic field. In the end, we discuss related issues, such as the 

impact of the Sun on the terrestrial climate (e.g., Cho & Chang 

2008; Park & Chang 2013; Kim et al. 2017a; Kim et al. 2017b; 

Lee et al. 2017; Hwang et al. 2018; Kim et al. 2018). The paper 

is organized as follows. We discuss stochastic properties and 

periodicities of the North-South asymmetry of the observed 

sunspot data in Section 2. We discuss how we define the 
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center-of-latitude (COL) and what we find from the analysis 

of distributions of the COL in Section 3. We present a couple 

of issues related to the North-South asymmetry of sunspots in 

Section 4. Finally, we conclude in Section 5.

2. NORTH-SOUTH ASYMMETRY OF SUNSPOT 
AREA

2.1 Stochastic Properties

Asymmetries between the northern and southern hemi-

spheres have been previously reported in various solar indices. 

In Fig. 1, we show the monthly average of the sunspot area 

appearing in the solar northern and southern hemispheres, AN 

and AS, and its difference, AS-AN, as appeared in Chang (2008). 

It should be noted from the bottom plot that the absolute 

difference is enhanced near the solar maxima and that the cycle 

maxima in both hemispheres are shifted by a couple of years (cf. 

Temmer et al. 2006). As far as we are aware, there is a magnetic 

flux transport dynamo model that successfully reproduces the 

amplitude and duration fairly well but not the phase difference 

in the solar activity. This is partly why a clear explanation 

for the physical cause of the North-South asymmetry is still 

outstanding, yet it is suspected to be related to the dynamo 

action (e.g., Ossendrijver et al. 1996; Zharkov & Zharkova 2006). 

Note that Pulkkinen et al. (1999) proposed an idea that the solar 

North-South asymmetry phenomenon could be explained by 

the oscillation in a quadrupolar component of a mixed parity 

mode excited in the solar magnetic field.

According to Chang (2008), the sunspot area can be modeled 

with random noise superposed on a slowly varying background 

characterizing the observed asymmetry of the sunspot area. 

Thus, the sunspot areas in the two hemispheres, AS and AN, are 

assumed to be approximated by 

 

According to Chang (2008), the sunspot area can be modeled with random noise superposed on a slowly 
varying background characterizing the observed asymmetry of the sunspot area. Thus, the sunspot areas in 
the two hemispheres, AS and AN, are assumed to be approximated by  

 
𝐴𝐴𝑆𝑆 =  ( 1 +  ϵ𝑆𝑆 )  ×  sin𝑛𝑛(𝜔𝜔0 +  𝜙𝜙), 

                𝐴𝐴𝑁𝑁 = (1 +  𝜖𝜖𝑁𝑁)  ×  sin𝑚𝑚 𝜔𝜔0𝑡𝑡                      (1) 

 

where 𝜔𝜔0 represents the solar cycle frequency, ϕ is the phase shift, and 𝜖𝜖𝑆𝑆 and 𝜖𝜖𝑁𝑁 are random noise 
(e.g., Chang 2009a). Two kinds of noise distribution were employed to reproduce the observational features: 
(1) uniform distribution and (2) exponential distribution. Random noise is assumed to be multiplicative 
rather than additive, since the former reproduces observational features more satisfactorily.  

In Fig. 2, we show the difference between the monthly average of the sunspot area and the sum of the 
sunspot areas in the northern and southern hemispheres at a given time. The scatterplot represents the 
dependence of the asymmetry upon the magnitude of the solar activity index itself. There seems to be an 
evident pattern in this scatterplot, which is related to the stochastic properties of the magnitude of the North-
South asymmetry. In Fig. 3, for example, we show scatterplots for the uniform distribution and exponential 
distribution with and without 2-year phase lags, as denoted in the upper left corner in each panel. As the 
phase lag becomes greater than a couple of years, the silhouette of scatters significantly deviates from the 
observational data (cf. Waldmeier 1971; Swinson et al. 1986; Zolotova & Ponyavin 2006). Another 
important point is that the exponential distribution case agrees with the observed sunspot area data more 
closely than the uniformly distributed random number case. According to Chang (2008), when m and n have 
different values, the scatterplot becomes less symmetric with respect to the horizontal axis, which is what 
one may see in the observed data. 
 
2.2. Periodicity of North-South Asymmetry 

Chang (2007a) studied the temporal variations in the North-South asymmetries of the sunspot area, 
applying the periodogram analysis method developed by Lomb and Scargle (see Kim & Chang 2014), an 
appropriate tool for analyzing unevenly-spaced data. From this analysis, sunspot areas in the northern and 
southern hemispheres were revealed to exhibit the ~11-year periodicity when they were analyzed separately. 
However, it was noted that the main periodicity of the absolute asymmetry is ~9 years, while the main 
periodicity of the relative asymmetry, the difference divided by total area, is ~12 years. This study also noted 
other periodicities of ~1.4, ~3.8, and ~43 years. Chang (2007b, 2009b) also employed the cepstrum analysis 
method to reanalyze the power spectrum of the North-South asymmetry after applying a cleaning process 
and confirmed the earlier conclusion of Chang & Han (2008). However, some of the short periodicities 
appear to be unable to survive the deconvolution process (cf. Knaack et al. 2004; Ballester et al. 2005). The 
shorter periodicities should be more closely studied. For instance, Cho & Chang (2011) have reported that 
the periodicity of ~5.5 years can be found in each hemisphere when the center-of-latitude (COL) is analyzed. 
They further suggested that the periodicity of ~49 years is found in the averaged COL. 
 

3. LATITUDINAL DISTRIBUTION OF SUNSPOTS USING THE CENTER-OF-
LATITUDE 
 

Sunspot latitude is a definitive indication of the phase of the sunspot cycle, indicating how active the Sun 
is. As mentioned above, however, a study of the latitudinal distribution with the conventional butterfly 
diagram conclusion may be biased due to a large group of small sunspots. This is why a cleaner butterfly 
diagram is necessary. To bypass this issue, Cho & Chang (2011) attempted a novel approach to a diagram of 
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Fig. 2. Scatterplot of the difference against the sum of the sunspot areas in both 
hemisphere, redrawn to reproduce the lower panel of Fig. 2 in Chang (2008). We show AS - AN 
versus AS + AN at the same epoch.
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phase lags, redrawn to reproduce Fig. 3 in Chang (2008). Values of n and m are the same and 
are set to 2.4.
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and Scargle (see Kim & Chang 2014), an appropriate tool 

for analyzing unevenly-spaced data. From this analysis, 

sunspot areas in the northern and southern hemispheres 

were revealed to exhibit the ~11-year periodicity when they 

were analyzed separately. However, it was noted that the 

main periodicity of the absolute asymmetry is ~9 years, 

while the main periodicity of the relative asymmetry, the 

difference divided by total area, is ~12 years. This study 

also noted other periodicities of ~1.4, ~3.8, and ~43 years. 

Chang (2007b, 2009b) also employed the cepstrum analysis 

method to reanalyze the power spectrum of the North-

South asymmetry after applying a cleaning process and 

confirmed the earlier conclusion of Chang & Han (2008). 

However, some of the short periodicities appear to be 

unable to survive the deconvolution process (cf. Knaack 

et al. 2004; Ballester et al. 2005). The shorter periodicities 

should be more closely studied. For instance, Cho & Chang 

(2011) have reported that the periodicity of ~5.5 years can 

be found in each hemisphere when the COL is analyzed. 

They further suggested that the periodicity of ~49 years is 

found in the averaged COL.

3. LATITUDINAL DISTRIBUTION OF SUNSPOTS 
USING THE CENTER-OF-LATITUDE

Sunspot latitude is a definitive indication of the phase of the 

sunspot cycle, indicating how active the Sun is. As mentioned 

above, however, a study of the latitudinal distribution with 

the conventional butterfly diagram conclusion may be biased 

due to a large group of small sunspots. This is why a cleaner 

butterfly diagram is necessary. To bypass this issue, Cho & 

Chang (2011) attempted a novel approach to a diagram of the 

latitudinal distribution of sunspots. They defined the ‘COL’ by

 

the latitudinal distribution of sunspots. They defined the ‘center-of-latitude (COL)’ by 
 

COL =  ∑ (𝑎𝑎𝑖𝑖𝑖𝑖 ×  𝐿𝐿𝑖𝑖)/ ∑ 𝑎𝑎𝑖𝑖𝑖𝑖                               (2) 
 

where 𝑎𝑎𝑖𝑖 is the i-th sunspot group area and 𝐿𝐿𝑖𝑖 is its latitude.  
In Fig. 4 we show the ‘center-of-latitude (COL)’ as a function of time. In the upper panel, the averaged 

COL for sunspots appearing both in the northern and southern hemispheres is separately plotted. Here, the 
plus and minus signs represent the northern and southern hemispheres, respectively. In the middle panel, the 
averaged COL for sunspots appearing in both hemispheres is plotted, taking into account the sign of the 
latitude. In the bottom panel, a similar plot to that in the middle panel is shown, with the exception that the 
averaged COL is computed without considering its sign. Based on the newly suggested butterfly diagram, 
Chang (2012) noted that the COL does not steadily decrease, as commonly considered (cf. Ternullo 2007a). 
Instead, short plateaus or humps between solar minima are commonly seen at latitudes of ~±10°. In fact, 
humps appear around all solar maxima, which may well be related to the ‘active latitude’, proposed in other 
studies (e.g., Solanki et al. 2008; Li et al. 2003; Ternullo 2010). Chang (2012) also found that each of the 
wings of the butterfly diagram is not symmetrical nor does it monotonically drift to the equator. 

In Fig. 5, we show the histogram of the COL and its best fit. Solid, dashed, and dotted curves represent 
the best fit of the double Gaussian function and two Gaussian components, respectively. The distribution of 
the COL as a whole is well represented by the double Gaussian function, having maxima at ~±11° and ~±20°. 
Regardless of which hemisphere is magnetically dominant, the main component of the double Gaussian 
function seems to remain unchanged. The central position and the full-width-at-half-maximum (FWHM) are 
largely unchanged, as well. On the other hand, as shown in Fig. 6, when the northern (southern) hemisphere 
is dominant, the width of the secondary component of the northern (southern) hemisphere becomes about 
twice as wide as that of the southern (northern) hemisphere. In other words, which hemisphere is dominant 
can be determined by measuring the width of the secondary component at higher latitudes. 

Chang (2011) further reported that centroid1 (or centroid2), at which the double Gaussian function has its 
maxima, and the sum of sunspot area symbolizing solar activity are apparently correlated. This becomes 
more obvious when the data point corresponding to solar cycle 19 is excluded. From this it can be inferred 
that sunspots of a more active cycle tend to emerge at higher latitudes on the whole, as Li et al. (2002) have 
concluded. According to Chang (2015), the secondary component of the double Gaussian function at higher 
latitudes seems also to shift, depending on the duration of solar cycle, such that the central position peaks at 
~±22.1° for the short cycles and at ~±20.7° for the long cycles with very small errors. This too agrees with 
earlier claims (cf. Hathaway et al. 2003). 

4. RELATED ISSUES

It is well known that the cyclic variations of the Sun’s open magnetic flux modulate the cosmic ray flux 
reaching the Earth. Cho et al. (2011) investigated the dependence of the amount of observed galactic cosmic 
ray (GCR) influx on the solar North-South asymmetry. They found that the observed GCR influxes at the 
Moscow, Kiel, Climax, and Huancayo stations are suppressed when the solar southern hemisphere is more 
active compared with when the solar northern hemisphere is active. This finding has interesting implications 
on the terrestrial climate. As such, the decrease in the observed GCR influx may reduce the low-level cloud 
cover and, consequently, the terrestrial albedo (Svensmark & Friis-Christensen 1997; Egorova et al. 2000; 
Carslaw et al. 2002; Svensmark 2007). The study of the responses of atmospheric ionization and the global 
electric circuit to varying GCRs also demonstrate that atmospheric transparency is associated with the GCR 
flux (Roldugin & Tinsley 2004). Hence, one may suspect that the solar North-South asymmetry plays a role 
in modulating the temperature anomaly (Cho et al. 2009; Georgieva 2002; Georgieva et al. 2005, 2007). In 
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where ai is the i-th sunspot group area and Li is its latitude. 

In Fig. 4 we show the ‘COL’ as a function of time. In the 

upper panel, the averaged COL for sunspots appearing both 

in the northern and southern hemispheres is separately 

plotted. Here, the plus and minus signs represent the 

northern and southern hemispheres, respectively. In the 

middle panel, the averaged COL for sunspots appearing in 

both hemispheres is plotted, taking into account the sign of 

the latitude. In the bottom panel, a similar plot to that in the 

middle panel is shown, with the exception that the averaged 

COL is computed without considering its sign. Based on 

the newly suggested butterfly diagram, Chang (2012) noted 

that the COL does not steadily decrease, as commonly 

considered (cf. Ternullo 2007a). Instead, short plateaus 

or humps between solar minima are commonly seen at 

latitudes of ~±10°. In fact, humps appear around all solar 

maxima, which may well be related to the ‘active latitude’, 

proposed in other studies (e.g., Li et al. 2003; Solanki et al. 

2008; Ternullo 2010). Chang (2012) also found that each of 

Fig. 4. ‘Center-of-latitude (COL)’, redrawn to reproduce Fig. 1 in Cho & Chang (2011). Thick and thin 
curves represent the yearly averaged COL and the monthly averaged COL, respectively. In the upper 
panel, we plot separately the COL for the northern and southern hemispheres. In the middle panel, we 
plot the average COL of both hemispheres, taking into account its sign. In the bottom panel, we plot 
the average COL of both hemispheres without considering its sign.
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the wings of the butterfly diagram is not symmetrical nor 

does it monotonically drift to the equator.

In Fig. 5, we show the histogram of the COL and its best fit. 

Solid, dashed, and dotted curves represent the best fit of the 

double Gaussian function and two Gaussian components, 

respectively. The distribution of the COL as a whole is well 

represented by the double Gaussian function, having maxima 

at ~±11° and ~±20°. Regardless of which hemisphere is 

magnetically dominant, the main component of the double 

Gaussian function seems to remain unchanged. The central 

position and the full-width-at-half-maximum (FWHM) are 

largely unchanged, as well. On the other hand, as shown in 

Fig. 6, when the northern (southern) hemisphere is dominant, 

the width of the secondary component of the northern 

(southern) hemisphere becomes about twice as wide as that 

of the southern (northern) hemisphere. In other words, which 

hemisphere is dominant can be determined by measuring the 

width of the secondary component at higher latitudes.

Chang (2011) further reported that centroid
1
 (or centroid

2
), 

at which the double Gaussian function has its maxima, and the 
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sum of sunspot area symbolizing solar activity are apparently 

correlated. This becomes more obvious when the data point 

corresponding to solar cycle 19 is excluded. From this it can be 

inferred that sunspots of a more active cycle tend to emerge at 

higher latitudes on the whole, as Li et al. (2002) have concluded. 

According to Chang (2015), the secondary component of the 

double Gaussian function at higher latitudes seems also to shift, 

depending on the duration of solar cycle, such that the central 

position peaks at ~±22.1° for the short cycles and at ~±20.7° 

for the long cycles with very small errors. This too agrees with 

earlier claims (cf. Hathaway et al. 2003).

4. RELATED ISSUES

It is well known that the cyclic variations of the Sun’s open 

magnetic flux modulate the cosmic ray flux reaching the Earth. 

Cho et al. (2011) investigated the dependence of the amount 

of observed galactic cosmic ray (GCR) influx on the solar 

North-South asymmetry. They found that the observed GCR 

influxes at the Moscow, Kiel, Climax, and Huancayo stations 

are suppressed when the solar southern hemisphere is more 

active compared with when the solar northern hemisphere 

is active. This finding has interesting implications on the 

terrestrial climate. As such, the decrease in the observed GCR 

influx may reduce the low-level cloud cover and, consequently, 

the terrestrial albedo (Svensmark & Friis-Christensen 1997; 

Egorova et al. 2000; Carslaw et al. 2002; Svensmark 2007). 

The study of the responses of atmospheric ionization and the 

global electric circuit to varying GCRs also demonstrate that 

atmospheric transparency is associated with the GCR flux 

(Roldugin & Tinsley 2004). Hence, one may suspect that the 

solar North-South asymmetry plays a role in modulating the 

temperature anomaly (Georgieva 2002; Georgieva et al. 2005, 

2007; Cho et al. 2009). In fact, Cho et al. (2012) have shown 

that the mean global temperature anomaly is systematically 

smaller (0.56 in the unit of its standard deviation) during the 

period when the solar northern hemisphere is more active 

than the solar southern hemisphere. 

Acid rain is any form of precipitation that causes water 

and soil to become acidic, which is harmful for plants, 

aquatic animals, and infrastructure (Likens et al. 1979). Acid 

rain is known to be caused by sulfur dioxide and nitrogen 

oxide emitted by industrial and transportation sources. 

However, the actual pathways are very intricate and can 

be influenced by prevailing atmospheric conditions, such 

as sunlight, temperature, humidity, and the presence of 

hydrocarbons, nitrogen dioxides, and particulates in the 

atmosphere (Wisniewski & Kinsman 1982; Parungo et al. 

1987; Cotter et al. 2003; Frey et al. 2005). According to the 

ice core extracted at Talos Dome in Antarctica, solar cycles 

were present in the pre-industrial epoch, with a variability 

of 10–25 % in nitrate content (Zeller & Parker 1981; Zeller & 

Dreschhoff 1995; Patris et al. 2002; Traversi et al. 2012). In 

fact, large solar proton events can have quite a sporadic yet 

very significant impact on the stratospheric nitrogen oxide 

(NO
x
) budget (Storini & Damiani 2007; Damiani et al. 2010; 

Funke et al. 2011). Such attributes encouraged attempts 

to link solar variability to the chemistry of nitrogen oxide 

(Logan 1983;  Garcia & Solomon 1994). Moon et al. (2014) 

studied the measured pH in precipitation in the United 

States and found that precipitation pH data is marginally 

anticorrelated with the solar North-South asymmetry and is 

correlated with solar UV radiation. 

5. CONCLUSIONS

Sunspots represent one of the most noticeable manifest-

ations of magnetic fields on the solar surface. Since it was 

discovered, the North-South asymmetry is considered to 

be one of the most important ingredients in any theoretical 

model that explains the features of the observed solar 

magnetic field. The bimodality of the sunspot latitudinal 

distribution more appropriately characterizes the aspect of 

the active latitude mentioned earlier. It is also demonstrated 

that the secondary component of the double Gaussian 

function may become an indicator of the North-South 

asymmetry of the solar magnetic field. Explorations of the 

newly suggested butterfly diagram reveal that the two wings 

of the butterfly diagram are different from each other. The 

latitudinal migration of the center-of-latitude does not 

monotonically proceed. All these findings may point to the 

conclusion that the solar magnetic field is generated and 

governed by more than one single process.

The magnetically variable Sun influences the Earth in 

diverse ways, including the terrestrial magnetic environment. 

By modulating the GCR influx, the solar North-South 

asymmetry appears to affect the Earth’s energy balance 

and influence chemistry in the upper atmosphere. A better 

understanding of the relation between the spatial distribution 

of sunspots and the terrestrial climate is required to explain 

the possible connection between solar variability and 

terrestrial climate change, in which interest has increased.
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