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This paper presents a satellite relative navigation strategy for formation flying, which chooses an appropriate navigation 
algorithm according to the operating environment. Not only global positioning system (GPS) measurements, but laser 
measurements can also be utilized to determine the relative positions of satellites. Laser data is used solely or together with 
GPS measurements. Numerical simulations were conducted to compare the relative navigation algorithm using only laser data 
and laser data combined with GPS data. If an accurate direction of laser pointing is estimated, the relative position of satellites 
can be determined using only laser measurements. If not, the combined algorithm has better performance, and is irrelevant to 
the precision of the relative angle data between two satellites in spherical coordinates. Within 10 km relative distance between 
satellites, relative navigation using double difference GPS data makes more precise relative position estimation results. If the 
simulation results are applied to the relative navigation strategy, the proper algorithm can be chosen, and the relative position 
of satellites can be estimated precisely in changing mission environments.
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1. INTRODUCTION

As satellite formation flying technology has advanced, it 

has become possible to perform several space missions that 

could not be performed with a single satellite. In the Gravity 

Recovery and Climate Experiment (GRACE) mission, two 

satellites flying in formation gathered data for the Earth 

gravitational model (Kroes et al. 2005). TerraSAR-X and 

TanDEM-X were flying in formation to generate the global 

digital elevation model (DEM) using synthetic aperture 

radar (SAR) (Krieger et al. 2007). PRISMA mission also 

navigated using relative positions based on global positioning 

system (GPS) (Candela et al. 2016). By using precise relative 

navigation, collision avoidance could also be maintained 

(Hwang et al. 2013). Precise relative navigation is required to 

succeed in these various formation flying missions. Various 

studies such as a satellite relative dynamic model (Park et 

al. 2009) have been conducted to provide precise relative 

navigation. In particular, the means to provide observations 

to improve relative navigation have been studied. The relative 

navigation algorithms are modified from the algorithms of 

absolute satellite navigation (Shin et al. 2016; Kim et al. 2017; 

Lee et al. 2017a, b). Fundamentally, relative navigation can 

be performed using GPS signals (Montenbruck et al. 2002). 

Park et al. (2008) and Sim et al. (2009) presented relative 

navigation algorithms based on the extended Kalman 

filter (EKF) and unscented Kalman filter (UKF) using GPS 

measurements. The relative navigation performance can 

be improved by using measurements other than GPS data. 

Recently, relative navigation algorithms using a miniaturized 

femtosecond laser distance meter have been developed. Jung 

et al. (2012) introduced a relative navigation algorithm based 

on laser measurements and laser pointing vectors. Lee et al. 

(2015) introduced a laser-based relative navigation algorithm 

using GPS measurements. It showed better performance than 

an algorithm using only GPS measurements. Furthermore, 

it was more precise than the algorithm using only laser 

measurements when the error of the angle data was large. 

Oh et al. (2016) improved carrier-phase differential GPS 

(CDGPS) by applying the laser measurements to GPS integer 
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ambiguity estimation. The relative navigation algorithm 

by Oh et al. (2016) had not been compared with the other 

methods. The algorithms were verified using theoretically 

simulated laser measurement data that did not consider 

the hardware properties of the instrument. Lee et al. (2018) 

presented relative navigation using intermittent laser-based 

measurement data.

In this study, the performance of the previous algorithms 

(Jung et al. 2012; Lee et al. 2015; Oh et al. 2016) is compared 

under various conditions and with improved laser measurement 

data that includes the hardware properties of the instrument. 

Numerical simulations are conducted on hardware-in-the-loop 

simulator (HILS) developed by Park et al. (2010). Each navigation 

method has different characteristics, which are reflected in the 

simulation results. By utilizing the results of this study, a satellite 

relative navigation strategy could be figured out according to the 

space operating environments. Based on the simulation results, 

we selected the algorithm with the highest performance among 

the three, according to the operating environment and identified 

the points where the performance-rank changed. Based on pre-

determined points, a strategy was developed to have the best 

performance among the navigation algorithms loaded on the 

satellites, by switching to an appropriate algorithm whenever 

the environment changed. First, coordinate systems and the 

algorithms used in this research are explained briefly. Then, the 

simulation results are analyzed. Finally, a relative navigation 

strategy is presented based on the simulation results. 

2. COORDINATE SYSTEM

In this research several coordinate systems were used. 

The absolute orbit of satellites was determined in Earth-

centered, Earth-fixed (ECEF) coordinates using GPS data. The 

determined orbit was transformed to Earth-centered inertial 

(ECI) coordinates to be utilized for relative orbit determination. 

Fig. 1 shows the relative coordinate systems used to describe 

a relative position of a deputy satellite in relation to the chief 

satellite. The relative orbit of the deputy satellite is determined 

in RSW coordinates and spherical coordinates. The center of 

RSW coordinates is the center-of-mass of the chief satellite. 

The radial direction of the chief satellite from Earth is set to an 

x-axis. A normal direction of the chief satellite’s orbit is set to a 

z-axis. A velocity direction of the chief satellite perpendicular to 

the x-axis and z-axis is set to a y-axis. In spherical coordinates, 

parameter ρ means the intersatellite distance (between the 

chief and the deputy). Parameters θ and φ mean angular 

displacement from the x-axis on the x-y plane and from the x-y 

plane to the z-axis, respectively.

3. RELATIVE NAVIGATION ALGORITHMS

In this research, the performance of three algorithms was 

compared. Table 1 shows the technical characteristics of the 

algorithms. Algorithm 1 uses only laser measurements to 

determine the position of the deputy satellite. Algorithm 2 

and 3 use both laser measurements and differences of GPS 

measurements. Algorithm 1 and 2 estimate the position of 

the deputy satellite in spherical coordinates, which are then 

converted to RSW coordinates. Because of the conversion, 

the error of the angles has a large effect on positioning error 

when the distance between the satellites is far. On the other 

hand, Algorithm 3 directly estimates the position in RSW 

coordinates. The algorithms determine the relative orbit in 

real time using EKF. In this paper, the explanation of the EKF 

procedure is omitted because it is a well-known method. 

3.1 Algorithm 1: Laser-Only Relative Navigation

The relative orbit of the deputy can be determined using 

laser ranging data and the direction angle of the laser (Jung 

et al. 2012). Eq. (1) is the state vector. Position and velocity 

in spherical coordinates are estimated (see Fig. 2). Below, 

ρCD & ρ̇CD indicate the inter-satellite range and range rate 

between the chief satellite and the deputy satellite.
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difference
Attitude 

information
Use Not use Not use

Filter EKF EKF EKF
States vectors’ 

coordinates
Spherical Spherical RSW

Fig. 1. Chief-centered relative coordinate systems: Position of the 
deputy satellite is represented with RSW coordinates and spherical 
coordinates.
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of range data L measured by laser, and laser pointing angle 

θ̂, φ̂. The pointing vector is estimated based on attitude 

information.
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The laser measurement data L shows drift due to the range 

rate ρ̇CD (Jung et al. 2012). The scale factor of the drift is κ. The 

error levels of the measurement data were determined by 

laser distance meter specification and attitude-determination 

error. The estimation result in spherical coordinates is directly 

related to the measurement error. In particular, large attitude 

determination errors make the performance of relative 

navigation worse because the inter-satellite range increases.

3.2 Algorithm 2: Laser-GPS Combined Relative Navigation

The relative orbit of the deputy satellite with respect to the 

chief satellite can be determined by using laser ranging data 

and GPS data (Lee et al. 2015). Algorithm 1 is affected by the 

attitude determination precision. To compensate for this 

defect, Algorithm 2 utilizes the single difference of the GPS 

pseudo-range data instead of the attitude information. The 

pseudo-range includes errors caused by clock bias, ionospheric 

path delay, and some other terms. The ionospheric path delay 

and the GPS satellite’s clock offset terms can be neglected by 

subtracting the pseudo-ranges of the chief and the deputy 

satellites (Montenbruck et al. 2002). Eq. (5) is the state 

vector estimated by Algorithm 2. The last element δtCD is the 

difference between the GPS clock bias in the chief and the 

deputy satellites.
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omitted because it is irrelevant to the relative orbit of the 

deputy satellite. The pseudo-range data is smoothed using 

the carrier phase data.

3.3 Algorithm 3: Laser-CDGPS Combined Relative 

Navigation

The carrier-phase differential GPS (CDGPS) can be improved 

with laser measurement data (Oh et al. 2016). In CDGPS, the 

double difference of the pseudo-range and carrier-phase are 

used. It is essential to determine the GPS integer ambiguity 

accurately to utilize the carrier-phase measurements. In other 

words, a representative cause of error of CDGPS is failure to 

estimate GPS integer ambiguity. By supplementing the laser 

measurement data at the sub-millimeter level, the success 

rate of the integer ambiguity determination increased. As a 

result, it improved the performance of the CDGPS. The state 

vector includes variations of the position δr⃗C and the velocity 

δr⃗Ċ of the chief satellite, as well as the relative position  δr⃗CD and 

the relative velocity δr⃗ ̇CD of the deputy satellite because this 

algorithm uses the linearized GPS measurement model. It also 

includes integer ambiguity (see Eq. 9).
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deputy satellite to produce the GPS L1 signal observed by the 

receiver (AsteRX1 PRO) manufactured by Septentrio Inc. The 

GNSS simulator and the receiver are components of the HILS. 

They make a GPS signal reflecting the hardware properties in 

real time (Park et al. 2010). The true state data of the chief and 

the deputy satellites are simulated by numerical integration 

of the dynamic model, which includes acceleration due to 

gravitational forces (Earth, Moon, and Sun), atmospheric 

forces, and solar radiation pressure. In contrast, the dynamic 

model in the EKF only considers the J2 term as perturbation 

to reduce the computational burden.

To analyze the performance of each algorithm, we compared 

the accuracy of the simulation results of the relative distance 

between the satellites and the attitude determination accuracy. 

For the initial conditions of the chief and deputy satellites, the 

relative distance was set from 500 m to 200 km on a projected 

circular orbit (PCO). The attitude determination accuracy 

was set to 1″, 0.001°, 0.005°, and 0.01°. The components of 

the position and velocity in the ECEF frame for each of the 

chief and the deputy satellites are presented in Table 2. The 

simulations ran for 5,000 seconds and the sampling time of the 

GPS and laser measurement data was one second.

4.2 Simulation Results and Analysis

Table 3 shows the simulation results, which represent 

the 3D root-mean-square (3D RMS) of the relative position 

determination error in millimeters. The performance of Algo-

rithm 1 deteriorates in proportion to the attitude determination 

error. The performances of Algorithm 2 and 3 are unrelated 

to the satellite attitude. As the relative distance increases, 

the precision decay rate of Algorithm 3 is faster than that of 

Algorithm 2. Algorithm 1 has a rate similar to that of Algorithm 

3. When the inter-satellite range is less than 10 km, Algorithm 3 

has better performance than Algorithm 2. In contrast, Algorithm 

2 is more precise than Algorithm 3 when the relative distance 

is greater than 10 km. Figs. 5–8 show the comparison results 

of Algorithm 1 with the other algorithms. Algorithm 1 had the 

best performance when the attitude determination error was 1″ 
(see Fig. 5). When the deputy was closer than 10 km, the relative 

navigation error of Algorithm 1 was smaller than the error of the 

others with 0.001° attitude determination error (see Fig. 6). Figs. 

7 and 8 show that Algorithm 1 is similar or worse. Consequently, 

the relative navigation was conducted using Algorithm 1 when 

the attitude determination was precise. In the other cases, an 

appropriate algorithm should be selected (see Table 4).

5. CONCLUSIONS

In this research, real-time relative navigation algorithms using 

the laser and GPS measurement data were assessed. Software 

simulation was conducted to compare the performance of the 

algorithms using various inter-satellite range and precision 

of attitude determination. For numerical evaluation, the 

simulation results were represented as 3D RMS error. If the 

high-precision attitude determination system is guaranteed, 

the algorithm that uses only the laser measurements can have 

the best navigation result. Performance degradation, however, 

stands out as the attitude determination precision worsens. The 

same performance were maintained regardless of the attitude 

determination error, when the laser and GPS measurements 

Table 2. Initial position and velocity of the satellites in ECEF coordinates

X (m) Y (m) Z (m) VX (m/s) VY (m/s) VZ (m/s)
Chief -5,759,481 -3,330,404 1,950,961 3,310.365 -2,110.809 6,244.731

Deputy

500 m -5,759,753 -3,330,465 1,950,897 3,310.167 -2,110.751 6,244.552
1 km -5,760,310 -3,329,756 1,951,302 3,310.129 -2,110.952 6,244.182

10 km -5,764,918 -3,331,629 1,949,686 3,306.410 -2,109.635 6,241.149
50 km -5,800,941 -3,297.968 1,968,038 3,298.424 -2,117.805 6,217.353

100 km -5,842,445 -3,265,494 1,985,140 3,286.179 -2,124.554 6,190.139
200 km -5,925,581 -3,200,430 2,019,424 3,260.823 -2,137.293 6,136.190

Table 3. 3D RMS error of the relative position according to the conditions, inter-satellite 
range, and attitude determination error

Algorithm
Attitude 

Det. error
Inter-satellite range

500 m 1 km 10 km 50 km 100 km 200 km

1

1″ 0.73 1.83 9.23 73.33 141.26 295.75
0.001° 1.48 3.74 21.27 163.84 287.21 766.12
0.005° 8.19 10.86 94.51 486.55 983.41 3,854.15
0.01° 11.09 20.80 181.67 921.49 1,778.82 5,494.71

2 16.08 22.78 58.97 141.07 284.12 451.48
3 2.32 14.75 25.63 253.85 408.59 773.21

(Unit: mm)
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were combined. Therefore, if the deterioration of attitude 

determination occurs, perhaps due to such as malfunction of the 

attitude sensors, it would be more strategic to choose combined 

laser-GPS or combined laser-CDGPS relative navigation. Within 

about 10 km inter-satellite range, the laser-CDGPS combined 

relative navigation should be conducted because its error is 

smaller than the other’s. Although the switching point of the 

algorithms using combined measurements is determined at 

around 10 km inter-satellite range, the practical point should 

be determined in detail by considering several conditions, 

Fig. 6. 3D RMS error of the relative position according to inter-satellite 
range using Algorithm 1–3 when the attitude determination error is 
0.001°.

Fig. 7. 3D RMS error of the relative position according to inter-satellite 
range using Algorithm 1–3 when the attitude determination error is 
0.005°.

Fig. 8. 3D RMS error of the relative position according to inter-satellite 
range using Algorithm 1–3 when the attitude determination error is 0.01°.

Table 4. Characteristics of the relative navigation algorithms based on the simulation results

Algorithm 1 Algorithm 2 Algorithm 3

Laser State estimation (directly) State estimation (directly)
GPS integer ambiguity 

estimation
GPS Not use Single difference Double difference

Attitude information Use Not use Not use
Filter EKF EKF EKF

States vectors’ coordinates Spherical Spherical RSW
Dependence on attitude 
determination precision

High Low Low

Decay rate of precision according 
to the relative distance

High Low High

Proper performance condition Attitude det. Error < 0.001°
Attitude det. Error > 0.001°

Relative distance > 10 km Relative distance < 10 km

Fig. 5. 3D RMS error of the relative position according to inter-satellite 
range using Algorithm 1–3 when the attitude determination error is 1″.



293 http://janss.kr 

Dae-Eun Kang et al.   Characteristics of Relative Navigation Algorithms

such as the characteristics of the satellite system or the mission 

environment. In conclusion, a reasonable relative navigation 

algorithm can be chosen for suitable performance based on the 

simulation results.
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