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This paper presents a vision-based relative pose estimation algorithm and its validation through both numerical and hardware 
experiments. The algorithm and the hardware system were simultaneously designed considering actual experimental 
conditions. Two estimation techniques were utilized to estimate relative pose; one was a nonlinear least square method for 
initial estimation, and the other was an extended Kalman Filter for subsequent on-line estimation. A measurement model 
of the vision sensor and equations of motion including nonlinear perturbations were utilized in the estimation process. 
Numerical simulations were performed and analyzed for both the autonomous docking and formation flying scenarios. A 
configuration of LED-based beacons was designed to avoid measurement singularity, and its structural information was 
implemented in the estimation algorithm. The proposed algorithm was verified again in the experimental environment by 
using the Autonomous Spacecraft Test Environment for Rendezvous In proXimity (ASTERIX) facility. Additionally, a laser 
distance meter was added to the estimation algorithm to improve the relative position estimation accuracy. Throughout 
this study, the performance required for autonomous docking could be presented by confirming the change in estimation 
accuracy with respect to the level of measurement error. In addition, hardware experiments confirmed the effectiveness of the 
suggested algorithm and its applicability to actual tasks in the real world.
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1. INTRODUCTION

Formation flying offers benefits in many aspects, such 

as development period, launch cost, and performance, 

by replacing a single large spacecraft with several small 

spacecraft. However, in order to improve the performance 

of formation flying missions, it is necessary to operate 

spacecraft more precisely than a single spacecraft operation. 

Therefore, various research has been conducted to improve 

the accuracy of relative pose estimation between spacecraft.

The vision sensor provides relative pose information and 

is mainly used at short distances. Generally, it is relatively 

inexpensive compared to sensors such as lidar and radar. In 

addition, shorter relative distance means higher estimation 

accuracy. Therefore, the vision sensor is considered to be a 

powerful and promising sensor for proximity operation. As 

an example, recent proximity operations of Shenzhou-9 and 

Tiangong-1, as well as the docking of the spacecraft were carried 

out using a vision sensor (Xie et al. 2013). NASA employed an 

CCD optical sensor to install the SPHERES autonomous docking 

module, and utilized it to verify performance of the vision sensor 

in space (Saenz-Otero & Miller 2005) and conduct various 

studies (Olivieri et al. 2017).

Vision-based relative pose estimation has been generally 

performed using line of sight (LOS) vector measurement 

(Junkins et al. 1999). The relative state between spacecraft can 

be estimated by using the nonlinear least squares method 

(Junkins et al. 1999) or the extended Kalman filter (Kim et al. 

2007). In addition, a study was conducted for estimation of 

both the state of a chief and a deputy satellite based on chief 

coordinates rather than local vertical and local horizontal 

(LVLH) coordinates (Zhang et al. 2014). Previous studies 

applied the extended Kalman filter with zero-mean Gaussian 

with white noise as dynamic model error. Thus, it is possible 
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to estimate orbital elements of a chief spacecraft, as well as the 

relative pose, if the initial state error is not too large. However, 

the vision sensor provides only relative information, such that 

estimation of absolute orbital elements using idealized error 

is not convenient. It is confirmed that the relative position 

estimation accuracy decreases remarkably when considering 

nonlinear perturbations (Lee & Pernicka 2011). In this study, 

a projected circular orbit (PCO) formation flying scenario 

was implemented by applying nonlinear perturbations and 

possible degradation of the sensor resolution in reality.

Vision-based relative pose estimation can be utilized for 

satellite formation flying with relative navigation methods. 

The relative position of satellites can be determined using only 

GPS measurements (Sim et al. 2009) or laser measurements, 

which consist of range and direction data (Jung et al. 2012; Lee 

et al. 2018). Moreover, the relative position can be determined 

employing a laser in combination with GPS data (Lee et al. 

2015; Oh et al. 2016). With relative position and relative pose 

estimation, the precise formation flying technologies, such as the 

proximity operation, rendezvous, or docking, become feasible. 

Navigation algorithms for vision-based relative pose estimation 

can be derived from the filtering algorithms for absolute satellite 

navigation (Kim et al. 2017; Lee et al. 2017a, b).

Since it takes a lot of effort to verify formation flying 

technology in space, validation through a test-bed on the 

ground is regarded as the most reasonable alternative. 

A lot of research has been conducted using test-beds 

to obtain high stability and environmental similarity to 

space environments. In Texas A&M, a vision-based state 

estimation system, VisNav, was installed on a 2-degrees-

of-freedom (DOF) air bearing test bed (Du 2004). The 

MIT MVDS also performed ground validation through a 

3-DOF air bearing test bed (Rodgers 2006). In Yonsei, the 

Autonomous Spacecraft Test Environment for Rendezvous 

In proximity (ASTERIX) consists of an aluminum table, main 

computer, and two spacecraft simulators (Eun et al. 2018). 

ASTERIX can be used to perform a feasibility assessment on 

a number of systems, which will be on a space.

In this study, pose alignment was implemented by the 

vision system in numerical simulations to verify the feasibility 

of the system, i.e., that it can be applied to satellite formation 

flying. The influence of external environmental factors on 

the performance of formation flying was analyzed, while 

checking the estimation and control accuracy according 

to the level of observation error. In order to improve the 

relative position estimation accuracy even in the presence 

of nonlinear perturbation, we proposed a performance 

improvement by combination with a laser sensor. This will 

serve to supplement the existing algorithm, as the estimation 

performance declines with larger relative distances, 

suggesting the possibility of expanding the relative distance 

range of the formation flying that utilizes the vision sensor. 

By carrying out performance verification through hardware 

experiments, we confirmed that the constructed algorithm is 

applicable in a real environment in the presence of various 

disturbing factors. In addition, we investigated the reason 

behind the difference between the results of numerical 

simulations and hardware experiment and laid the basis 

for constructing algorithms that can be applied to real 

environments more pragmatically.

2. VISION-BASED MEASUREMENT SYSTEM

A measurement model of the estimation algorithm was 

constructed using a vision sensor, a laser distance meter, 

and a gyro sensor. 

2.1 Vision System 

The vision system consists of a CMOS video camera (Table 1),  

a red 5 mm circular LED, and the estimation algorithm. The 

camera in tracking spacecraft recognizes four LEDs attached 

to the target spacecraft and saves their positions on the CMOS 

image plane. The camera generates a gray scale 2D image with 

a fixed shutter speed and focal length. If we construct a vector 

from the position at which the light is focused to the center of 

the lens, the measurement can be written as follows (Alonso et 

al. 2000).
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In Eq. (1), �⃗�𝑏 𝑖𝑖 is the i-th measurement, and 𝐴𝐴 is the transformation matrix from the initial coordinate 
system to the sensor coordinate system. 𝑋𝑋𝑖𝑖

′, 𝑌𝑌𝑖𝑖
′, 𝑍𝑍𝑖𝑖

′ are coordinates of the i-th LED with respect to the target 
spacecraft, and 𝑥𝑥′, y′, z′ are coordinates of the target spacecraft with respect to the tracking spacecraft. The 
coordinates can be expressed in the LVLH coordinate system, the ECI (Earth-Centered Inertial) coordinate 
system, and the body-fixed coordinate system of the target spacecraft, etc. The measurement noise matrix of 
the Gaussian-distributed error was proven to be a diagonal matrix with diagonal components of the error 
variance as in Eq. (2) (Cheng et al. 2005). 
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2.2 LED Configuration 

 
Information provided by the vision sensor consists of projected LED positions on the CCD detector and 

the image size for image processing (Fig. 1). The LEDs have to be sufficiently brighter than surrounding 
lights, but at the same time should have moderate intensities to reduce measurement error due to inter-LED 
interference or light blur. This is achieved by adjusting camera aperture. The wavelength of the LEDs was 
selected in visible light range to minimize interference with infrared markers. 

The measurement values of the vision system consist of row and column positions in an image plane, 
whereas the LEDs have 3D position information in 3D space. Therefore, the matching does not always fulfill 
a one-to-one correspondence, such that a singularity problem can occur easily (Fig. 2). Singularity arises 
when all of the LEDs are placed on one plane (Rodgers 2006). Therefore, the minimum number of LEDs to 
avoid the singularity is four. 

Considering the viewing angle, all LEDs were positioned to be projected within 80 % of the image size 
when the camera and LED were located at the closest distance (Fig. 3). When the distance between the 
camera and the LEDs center is 5 cm, the dimensions of the LED configuration are 15 cm in width and 8 cm 
in height. The estimation accuracy with respect to the number and distribution of LEDs was discussed in 
detail in (Xing et al. 2010). 
 

2.3 Image Processing 
 
2.3.1. Calibration 

 
Calibration is a process of experimental and numerical determination for an actual focal length. This is 

an indispensable process that derives the internal matrix of the measurement model. The process numerically 
estimates internal parameters using several grid images (Zhang 2000). In this study, we used the GML C ++ 
Camera Calibration Toolbox v 0.72 beta developed by Graphics and Media Lab of National University of 
Moscow (http://graphics.cs.msu.ru/en/node/909). By calibration, we obtain the radial distortion, tangential 
distortion coefficient, a position for the principal point, and pixel error, as well as the focal length. The most 
influential variable is the focal length, which needs to be obtained every time the camera settings are 
changed.  

2.3.2. Cutoff 
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�⃗�𝑏 𝑖𝑖 = 𝐴𝐴𝑟𝑟 𝑖𝑖, 𝑖𝑖 = 1,2,3… 𝑛𝑛 

 (1)

Table 1. Camera (DFK33UX174) and lens (GMTHR48014MCN)

Contents Parameter
Manufacturer Imaging source

Imaging Device 1/1.2" Sony CMOS(IMX174LQ)
Resolution 1,920 × 1,200

Color RGB/Grayscale
Frame Rate 162 fps

Pixel Size 5.86e-6 m
Field of View 79.66° × 62.92°
Focal Length 8 mm

Dimensions(Camera) 29 × 29 × 43 mm



265 http://janss.kr 

Jeonghoon Hyun et al.   Spacecraft Pose Estimation Algorithm Evaluated Using Vision-based Sensor

In Eq. (1), bi is the i-th measurement, and A is the 

transformation matrix from the initial coordinate system to 

the sensor coordinate system. Xi', Yi', Zi' are coordinates of 

the i-th LED with respect to the target spacecraft, and x', y', 
z' are coordinates of the target spacecraft with respect to the 

tracking spacecraft. The coordinates can be expressed in the 

LVLH coordinate system, the ECI (Earth-Centered Inertial) 

coordinate system, and the body-fixed coordinate system of 

the target spacecraft, etc. The measurement noise matrix of 

the Gaussian-distributed error was proven to be a diagonal 

matrix with diagonal components of the error variance as in 

Eq. (2) (Cheng et al. 2005).
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of row and column positions in an image plane, whereas 

the LEDs have 3D position information in 3D space. 
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one correspondence, such that a singularity problem can 
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minimum number of LEDs to avoid the singularity is four.

Considering the viewing angle, all LEDs were positioned 

to be projected within 80 % of the image size when the 

camera and LED were located at the closest distance (Fig. 3).  

When the distance between the camera and the LEDs 

center is 5 cm, the dimensions of the LED configuration are 

15 cm in width and 8 cm in height. The estimation accuracy 

with respect to the number and distribution of LEDs was 

discussed in detail in (Xing et al. 2010).

2.3 Image Processing

2.3.1 Calibration

Calibration is a process of experimental and numerical 

determination for an actual focal length. This is an indispensable 

process that derives the internal matrix of the measurement 

model. The process numerically estimates internal parameters 

using several grid images (Zhang 2000). In this study, we 

used the GML C ++ Camera Calibration Toolbox v 0.72 beta 

developed by Graphics and Media Lab of National University 

of Moscow (http://graphics.cs.msu.ru/en/node/909). By 

calibration, we obtain the radial distortion, tangential distortion 

coefficient, a position for the principal point, and pixel error, 

as well as the focal length. The most influential variable is the 

focal length, which needs to be obtained every time the camera 

settings are changed. 

2.3.2 Cutoff

An image obtained with a camera gives different 2D 

information depending on parameter settings such as 

Fig. 1. 2D Gray scale image obtained by image processing.

Fig. 2. Singularity (Rodgers 2006).

Fig. 3. LED configuration considering singularity, field of view, and 
minimum distance.
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hue, brightness, and saturation. In order to extract the 

desired measurement, a cutoff process is necessary (Fig. 4).  

By the cutoff process, the number of observed objects is 

obtained at every capture and the cutoff value is adjusted 

repeatedly until the desired number is achieved. In this 

process, if the difference between successive positions of the 

object, LED, has a value larger than a specified value, failure 

is declared and passed to the next step. If failures are declared 

continuously, some action should be taken such as reducing 

surrounding lights by adjusting the experimental environment.

2.3.3 Centroiding

The center points of the LEDs are found in the LED image 

after cutoff (Fig. 1) by extracting the center of mass of the 

concentrated pixels. In the LED structure, a hemispherical 

part emitting light contains a filament in itself. Therefore, 

image distortion of the LED becomes larger with the increase 

in lateral distance between the center of the lens and the 

LED. The effect of image distortion on the observation error 

is shown in Fig. 5. If the relative distance in the line of sight 

direction is larger than 1 m, the observation error is less than 

1 pixel. In a previous study using the measurement model of 

Eq. (3.3) and the Position Sensitive Diode (PSD), the authors 

assumed an observation error of 0.3 – 0.5 pixels (Crassidis et 

al. 2000). We assumed observation errors of 0.1 – 5 pixels to 

analyze the estimation accuracy with respect to the level of 

observation errors. The observation error was set to less than 

1 pixel in the PCO formation flying scenario.

2.4 Gyro Sensor

The gyro sensor, which measures the angular velocity 

of the spacecraft, was applied to the filter and the relative 

attitude estimation. The angular velocity measured by the 

gyro includes drift and instability error, in addition to the 

actual angular velocity of the body. The gyro drift error is 

divided into white noise and a bias error. The instability 

error is divided into electric noise and a quantization error 

component. In this study, the most common gyro model, 

the first Markov process, was applied (Crassidis & Junkins 

2004).

 

4 

 

An image obtained with a camera gives different 2D information depending on parameter settings such 
as hue, brightness, and saturation. In order to extract the desired measurement, a cutoff process is necessary 
(Fig. 4). By the cutoff process, the number of observed objects is obtained at every capture and the cutoff 
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in Fig. 5. If the relative distance in the line of sight direction is larger than 1 m, the observation error is less 
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relative attitude estimation. The angular velocity measured by the gyro includes drift and instability error, in 
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successive positions of the object, LED, has a value larger than a specified value, failure is declared and 
passed to the next step. If failures are declared continuously, some action should be taken such as reducing 
surrounding lights by adjusting the experimental environment. 
 

2.3.3. Centroiding 
 
The center points of the LEDs are found in the LED image after cutoff (Fig. 1) by extracting the center 

of mass of the concentrated pixels. In the LED structure, a hemispherical part emitting light contains a 
filament in itself. Therefore, image distortion of the LED becomes larger with the increase in lateral distance 
between the center of the lens and the LED. The effect of image distortion on the observation error is shown 
in Fig. 5. If the relative distance in the line of sight direction is larger than 1 m, the observation error is less 
than 1 pixel. In a previous study using the measurement model of Eq. (3.3) and the Position Sensitive Diode 
(PSD), the authors assumed an observation error of 0.3 – 0.5 pixels (Crassidis et al. 2000). We assumed 
observation errors of 0.1 – 5 pixels to analyze the estimation accuracy with respect to the level of observation 
errors. The observation error was set to less than 1 pixel in the PCO formation flying scenario. 

2.4 Gyro Sensor 
 
The gyro sensor, which measures the angular velocity of the spacecraft, was applied to the filter and the 

relative attitude estimation. The angular velocity measured by the gyro includes drift and instability error, in 
addition to the actual angular velocity of the body. The gyro drift error is divided into white noise and a bias 
error. The instability error is divided into electric noise and a quantization error component. In this study, the 
most common gyro model, the first Markov process, was applied (Crassidis & Junkins 2004). 

 
ω⃗⃗ = �̃�𝜔 − 𝛽𝛽 − 𝜂𝜂𝑣𝑣 

                                      �̇�𝛽 = 𝜂𝜂𝑢𝑢                                          (3) 

 
In Eq. (3), 𝜂𝜂𝑣𝑣 and 𝜂𝜂𝑢𝑢 depict Gaussian white noise with an average of zero and spectral densities of 𝜎𝜎𝑣𝑣

2𝐼𝐼 
and 𝜎𝜎𝑢𝑢

2𝐼𝐼, respectively. 𝛽𝛽 denotes the drift error vector, and �̃�𝜔 is the measured angular velocity. The angular 
velocity can be estimated by propagating the attitude in Eq. (12). 
 
2.5 Laser Distance Meter 

 
The laser distance meter measures relative distance from the sensor to the object in the direction of the 

laser line of sight (Fig. 6). The device can measure relative distance at a rate of up to 50 Hz. The 
measurement model of the laser distance meter is as follows (Shin 2016). 
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coordinate system. The line of sight of the laser coincides with the x-axis of the laser coordinate system. It is 
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In Eq. (4), Aref
laser is the matrix for converting the coordinate 

system depicted by Rx, Ry, Rz to the laser coordinate system. 

The line of sight of the laser coincides with the x-axis of the 

laser coordinate system. It is assumed that the observed 

values can be obtained when the angle between the x-axis 

of the laser coordinate system and the position vector 

pointing from the laser to the target spacecraft is within 

1 m/√
_
(Rx

2+
_
Ry

2+
_
Rz

2)  rad. Therefore, in order to employ the laser, 

the alignment must be implemented by the vision sensor 

and the gyro sensor. The inherent measurement error of this 

equipment is within 5 mm (Fig. 6).

3. VISION-BASED RELATIVE POSE ESTIMATION 

The relative state between two spacecrafts can be 

estimated by using the nonlinear least squares method 

(Junkins et al. 1999) or the extended Kalman filter (Kim et 

al. 2007), both of which utilize the line of sight vector for 

measurement. The nonlinear least squares method provides 

a simple estimation solution by means of a numerical 

algorithm, but becomes inaccurate with large measurement 

noise.

The measurement model was constructed through 

the relationship between relative poses and expected 

measurements derived from lens equations and triangulation 

(Rodgers 2006). Using actual measurements, we can obtain 

the numerical solution of the rotation matrix, which involves 

the relative pose.

On the other hand, the extended Kalman filter can speed 

up the calculation and improve accuracy as precision of the 

dynamic model increases (Junkins et al. 1999). Therefore, it 

is possible to estimate the state between two spacecrafts on-

line with the extended Kalman filter.

3.1 Nonlinear Least Squares Method

To estimate the initial relative pose between two spacecrafts 

without prior information, Eq. (1) is solved iteratively 

with the current measurement only. As this is a nonlinear 

optimization problem with no constraints, we applied the 

Levenberg-Marquardt method, which is a nonlinear least 

squares method (More 1977). It is necessary to match the 

position of the LED with the projected position on the image 

plane, so that a solution converges by iterative calculation. 

Therefore, we terminate the numerical calculation to obtain 

a final solution when a solution with a residual of less than 10 

pixels is presented with a corresponding combination.

3.2 Extended Kalman Filter 

In the case of the extended Kalman filter, the measurement 

noise matrix is a diagonal matrix with diagonal components 

of the covariance of the observation error. When propagating 

trajectories through the relative orbital equation, a diagonal 

matrix with components of acceleration disturbances 

can be used as the process noise matrix (Kim et al. 2007). 

Nevertheless, we used Eq. (5), which describes an absolute 

orbital motion, to check the effect of nonlinear perturbation 

apart from white noise. Thereby, we found a proper process 

noise matrix by trial and error, in order to match standard 

deviation derived from the filter with the state error derived 

Fig. 6. LDM41.1(Jenoptik) (left), distance measurement error of laser (right).
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from reference state. 

3.3 Dynamic Model

3.3.1 Absolute Equations of Motion

In addition to Earth’s gravity, spacecrafts in Earth orbit 

are also affected by Earth’s non-spherical perturbations, 

atmospheric drag, 3rd body perturbations, and solar 

radiation pressure. The absolute equations of motion 

including these perturbations are as follows (Vallado 2014).
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assumed that the observed values can be obtained when the angle between the x-axis of the laser coordinate 
system and the position vector pointing from the laser to the target spacecraft is within 1 m/√𝑅𝑅𝑥𝑥2 + 𝑅𝑅𝑦𝑦2 + 𝑅𝑅𝑧𝑧2  
rad. Therefore, in order to employ the laser, the alignment must be implemented by the vision sensor and the 
gyro sensor. The inherent measurement error of this equipment is within 5 mm (Fig. 6). 
 
3. VISION-BASED RELATIVE POSE ESTIMATION  

 
The relative state between two spacecrafts can be estimated by using the nonlinear least squares method 

(Junkins et al. 1999) or the extended Kalman filter (Kim et al. 2007), both of which utilize the line of sight 
vector for measurement. The nonlinear least squares method provides a simple estimation solution by means 
of a numerical algorithm, but becomes inaccurate with large measurement noise. 

The measurement model was constructed through the relationship between relative poses and expected 
measurements derived from lens equations and triangulation (Rodgers 2006). Using actual measurements, 
we can obtain the numerical solution of the rotation matrix, which involves the relative pose. 

On the other hand, the extended Kalman filter can speed up the calculation and improve accuracy as 
precision of the dynamic model increases (Junkins et al. 1999). Therefore, it is possible to estimate the state 
between two spacecrafts on-line with the extended Kalman filter. 
 
3.1 Nonlinear Least Squares Method 

 
To estimate the initial relative pose between two spacecrafts without prior information, Eq. (1) is solved 

iteratively with the current measurement only. As this is a nonlinear optimization problem with no 
constraints, we applied the Levenberg-Marquardt method, which is a nonlinear least squares method (More 
1977). It is necessary to match the position of the LED with the projected position on the image plane, so 
that a solution converges by iterative calculation. Therefore, we terminate the numerical calculation to obtain 
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In the case of the extended Kalman filter, the measurement noise matrix is a diagonal matrix with 
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3.3 Dynamic Model 
 
3.3.1. Absolute Equations of Motion 

 
In addition to Earth’s gravity, spacecrafts in Earth orbit are also affected by Earth’s non-spherical 
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      𝑟𝑟 ̈ = −𝜇𝜇𝑟𝑟 𝑟𝑟3⁄ + 𝑎𝑎 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 + 𝑎𝑎 𝑒𝑒𝑒𝑒𝑒𝑒𝑎𝑎𝑒𝑒𝑒𝑒𝑎𝑎 + 𝑎𝑎 3𝑒𝑒𝑎𝑎𝑟𝑟𝑛𝑛𝑎𝑎𝑦𝑦 + 𝑎𝑎 𝑛𝑛𝑛𝑛𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑎𝑎𝑒𝑒𝑒𝑒𝑠𝑠𝑒𝑒𝑛𝑛𝑛𝑛                (5) 

 
In Eq. (5), the position vector of the spacecraft is depicted by 𝑟𝑟 , and 𝜇𝜇 is the Earth gravitational constant, 
while 𝑎𝑎 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 , 𝑎𝑎 𝑒𝑒𝑒𝑒𝑒𝑒𝑎𝑎𝑒𝑒𝑒𝑒𝑎𝑎, 𝑎𝑎 3𝑒𝑒𝑎𝑎𝑟𝑟𝑛𝑛𝑎𝑎𝑦𝑦, 𝑎𝑎 𝑛𝑛𝑛𝑛𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑎𝑎𝑒𝑒𝑒𝑒𝑠𝑠𝑒𝑒𝑛𝑛𝑛𝑛  represent accelerations due to the non-spherical 
perturbation, the atmospheric friction, the 3rd body gravitational perturbation, and the solar radiation pressure, 
respectively. The state vector propagated through the above equation was regarded to be the true value and 
used as a reference to be compared to the estimated value in order to evaluate estimation performance.  

 (5)

In Eq. (5), the position vector of the spacecraft is depicted 

by r, and μ is the Earth gravitational constant, while anonspherical, 
aairdrag, a3rdbody, asolarradiation represent accelerations due to the 

non-spherical perturbation, the atmospheric friction, the 

3rd body gravitational perturbation, and the solar radiation 

pressure, respectively. The state vector propagated through 

the above equation was regarded to be the true value and 

used as a reference to be compared to the estimated value 

in order to evaluate estimation performance. 

The attitude of the spacecraft was represented by a 

quaternion value. The angular velocity was represented in 

three axes of the body fixed coordinate system. The attitude 

dynamic model is expressed as follows (Zhang et al. 2014).
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The attitude of the spacecraft was represented by a quaternion value. The angular velocity was 
represented in three axes of the body fixed coordinate system. The attitude dynamic model is expressed as 
follows (Zhang et al. 2014). 

 

𝑞𝑞 ̇ = 1
2𝛯𝛯(𝑞𝑞 )�⃗⃗�𝜔 = 1

2𝛺𝛺(�⃗⃗�𝜔 )𝑞𝑞  
𝑞𝑞 = [𝑞𝑞1 𝑞𝑞2 𝑞𝑞3 𝑞𝑞0]𝑇𝑇 

𝛯𝛯(𝑞𝑞 ) ≡ [
𝑞𝑞0 −𝑞𝑞3
𝑞𝑞3 𝑞𝑞0

𝑞𝑞2
−𝑞𝑞1

−𝑞𝑞2 𝑞𝑞1
−𝑞𝑞1 −𝑞𝑞2

𝑞𝑞0
−𝑞𝑞3

]           (6) 

𝛺𝛺(�⃗⃗�𝜔 ) ≡ [
0 𝜔𝜔𝑧𝑧

−𝜔𝜔𝑧𝑧 0
−𝜔𝜔𝑥𝑥 𝜔𝜔𝑥𝑥
𝜔𝜔𝑥𝑥 𝜔𝜔𝑦𝑦

𝜔𝜔𝑦𝑦 −𝜔𝜔𝑥𝑥
−𝜔𝜔𝑥𝑥 −𝜔𝜔𝑦𝑦

0 𝜔𝜔𝑧𝑧
−𝜔𝜔𝑧𝑧 0

] 

 
In these expressions (6), the attitude and the angular velocity with respect to the inertial coordinate system 
are described in a body-fixed coordinate system. The derivative of the angular velocity can be obtained as 
follows. 

 
                          �⃗⃗�𝜔 ̇ = 𝐼𝐼;1(�⃗�𝑇 − �⃗⃗�𝜔 × (𝐼𝐼�⃗⃗�𝜔 ))                             (7) 

 
The attitude and the angular velocity are calculated by state equations Eq. (6) and (7). The torque includes 
the gravity gradient torque and control torque of a spacecraft. The attitude and angular velocity of the two 
spacecrafts are propagated in an inertial frame, and then the true value of the relative attitude is generated by 
the quaternion relationship as follows. 

 
                           𝑞𝑞 𝑑𝑑,𝑐𝑐 = 𝑞𝑞 𝑑𝑑 ⊗ 𝑞𝑞 𝑐𝑐;1                                (8) 

 

In Eq. (8), 𝑞𝑞 𝑑𝑑, 𝑞𝑞 𝑐𝑐 and 𝑞𝑞 𝑑𝑑,𝑐𝑐 are quaternions representing a deputy spacecraft, a chief spacecraft, and the 
relative attitude of the deputy spacecraft with respect to the chief spacecraft, respectively. The symbol ‘⊗’ 
denotes quaternion multiplication. 

The Jacobian matrix F of the filter was derived from Eq. (5). The dynamic model of the filter includes 
J2 perturbation. The orbit control includes an input error of about 10 %, which is a realistic value of the 
simulator thruster. The result could be seen in the numerical simulation of docking, which appeared to be 
working properly. 

An absolute equation of motion was mainly used for estimation with a sensor that gave the absolute 
attitude with respect to the inertial reference frame. Thus, it can also be implemented for the estimation of 
the spacecraft simulator, since the reference coordinate system is assumed to be inertial. The linearized state 
equation was constructed through Eq. (6) and Eq. (7). It is assumed that a torque in Eq. (7) comprises an 
error of about 10 % of the control input. Detailed matrices in the filter are not described in this paper because 
of their simplicity. 

 
3.3.2. Relative Equations of Motion 
 

Relative pose estimation with respect to a rotating coordinate frame requires relative equations of 
motion. Here, we describe the relative pose estimation method based on the LVLH coordinate system (Zhang 
et al. 2014). This method is used in the numerical simulation of PCO scenarios. 

If the relative distance between spacecraft is much smaller than the orbital radius of the spacecraft, it is 
convenient to establish the relative orbital equations representing the relative coordinates of the deputy 
spacecraft with respect to the chief orbital coordinate system (LVLH). If the trajectory of the chief orbit is a 
circle, the relative equation of motion is simplified to the following Clohessy-Wiltshire (CW) equation 
(Schaub & Junkins 2002). 
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�̈�𝑦 + 2𝑛𝑛�̇�𝑥 = 0 

                               �̈�𝑧 + 𝑛𝑛2𝑧𝑧 = 0                                    (9) 

𝑛𝑛 = 𝑓𝑓̇ = 𝑐𝑐𝑐𝑐𝑛𝑛𝑐𝑐𝑐𝑐𝑐𝑐𝑛𝑛𝑐𝑐 
 

In Eq. (9), x, 𝑦𝑦, 𝑧𝑧 are relative position components in the LVLH coordinate system, and 𝑓𝑓 is the orbital 
angular velocity.  

The relative attitude equation is expressed with the relative quaternion obtained by Eq. (8). It can be 
expressed as Eq. (10) (Lefferts et al. 1982). 

 
𝑞𝑞 𝑡𝑡,𝑐𝑐 = 𝑞𝑞 𝑡𝑡 ⊗ 𝑞𝑞 𝑐𝑐;1 

                   𝑞𝑞 ̇𝑡𝑡,𝑐𝑐 = − [[�⃗⃗�𝜔 𝑐𝑐 ×]𝜌𝜌 
0 ] + 1

2 [(�⃗⃗�𝜔 𝑡𝑡 − �⃗⃗�𝜔 𝑐𝑐)
0 ] ⊗ 𝑞𝑞 𝑡𝑡,𝑐𝑐                    (10) 

𝜌𝜌 = [𝑞𝑞1 𝑞𝑞2 𝑞𝑞3] 
 

The subscripts c and t in Eq. (10) refer to the reference and the other spacecraft, respectively. It was shown 
that Eq. (10) is identical to the following kinetic equations (Xing et al. 2001). 

 
                           𝑞𝑞 ̇𝑡𝑡,𝑐𝑐 = 1

2 𝛯𝛯(𝑞𝑞 𝑡𝑡,𝑐𝑐)�⃗⃗�𝜔 𝑡𝑡,𝑐𝑐                               (11) 

𝛯𝛯(𝑞𝑞 ) ≡ [𝑞𝑞4𝐼𝐼3×3 + [𝜌𝜌 ×]
−𝜌𝜌 ] 

 
Here, we can use some of the quaternion relations in (Kim et al. 2007). Therefore, the discrete equation of 
propagation is given as follows. 

 
                             𝑞𝑞 𝑡𝑡,𝑐𝑐,𝑘𝑘:1 = �̅�𝛺(�⃗⃗�𝜔 𝑡𝑡,𝑘𝑘)𝛤𝛤(�⃗⃗�𝜔 𝑐𝑐,𝑘𝑘)𝑞𝑞 𝑡𝑡,𝑐𝑐,𝑘𝑘                         (12) 

�̅�𝛺(�⃗⃗�𝜔 𝑡𝑡,𝑘𝑘) = [
cos (12 |�⃗⃗�𝜔 𝑡𝑡,𝑘𝑘|∆𝑐𝑐) 𝐼𝐼3×3 − [𝜓𝜓𝑘𝑘 ×] 𝜓𝜓𝑘𝑘

−𝜓𝜓𝑘𝑘
𝑇𝑇 cos (12 |�⃗⃗�𝜔 𝑡𝑡,𝑘𝑘|∆𝑐𝑐)

] 

𝛤𝛤(�⃗⃗�𝜔 𝑡𝑡,𝑘𝑘) = [
cos (12 |�⃗⃗�𝜔 𝑐𝑐,𝑘𝑘|∆𝑐𝑐) 𝐼𝐼3×3 − [𝜓𝜓𝑘𝑘 ×] −𝜁𝜁𝑘𝑘

𝜁𝜁𝑘𝑘𝑇𝑇 cos (12 |�⃗⃗�𝜔 𝑐𝑐,𝑘𝑘|∆𝑐𝑐)
] 

𝜓𝜓𝑘𝑘 =
sin (12 |�⃗⃗�𝜔 𝑡𝑡,𝑘𝑘|∆𝑐𝑐)

|�⃗⃗�𝜔 𝑡𝑡,𝑘𝑘|
�⃗⃗�𝜔 𝑡𝑡,𝑘𝑘 

𝜁𝜁𝑘𝑘 =
sin (12 |�⃗⃗�𝜔 𝑐𝑐,𝑘𝑘|∆𝑐𝑐)

|�⃗⃗�𝜔 𝑐𝑐,𝑘𝑘|
�⃗⃗�𝜔 𝑐𝑐,𝑘𝑘 

 
Eq. (12) assumes that angular velocities are constant during the time interval. Propagation error increases as 
the time interval is lengthened, or when the torque and changes in angular velocities are large. We 
constructed a state equation which includes the relative position, velocity, orbital elements, and derivative 
values of the orbital elements (Zhang et al. 2014). Then, since the estimation for absolute orbital components 
is meaningless when the true value is propagated with nonlinear perturbations, absolute orbital components 
and their derivatives are omitted. The state equation can be constructed as follows. 

 
𝑋𝑋 = [𝑥𝑥, 𝑦𝑦, 𝑧𝑧, �̇�𝑥, �̇�𝑦, �̇�𝑧, 𝑟𝑟𝑐𝑐, 𝑟𝑟�̇�𝑐 , 𝜃𝜃, �̇�𝜃]𝑇𝑇 

= [𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3, 𝑥𝑥4, 𝑥𝑥5, 𝑥𝑥6, 𝑥𝑥7, 𝑥𝑥8, 𝑥𝑥9, 𝑥𝑥10]𝑇𝑇 

 (9)

In Eq. (9), x, y, z are relative position components in 

the LVLH coordinate system, and f is the orbital angular 

velocity. 
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The relative attitude equation is expressed with the 

relative quaternion obtained by Eq. (8). It can be expressed 

as Eq. (10) (Lefferts et al. 1982).
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cos (12 |�⃗⃗�𝜔 𝑡𝑡,𝑘𝑘|∆𝑐𝑐) 𝐼𝐼3×3 − [𝜓𝜓𝑘𝑘 ×] 𝜓𝜓𝑘𝑘

−𝜓𝜓𝑘𝑘
𝑇𝑇 cos (12 |�⃗⃗�𝜔 𝑡𝑡,𝑘𝑘|∆𝑐𝑐)

] 

𝛤𝛤(�⃗⃗�𝜔 𝑡𝑡,𝑘𝑘) = [
cos (12 |�⃗⃗�𝜔 𝑐𝑐,𝑘𝑘|∆𝑐𝑐) 𝐼𝐼3×3 − [𝜓𝜓𝑘𝑘 ×] −𝜁𝜁𝑘𝑘

𝜁𝜁𝑘𝑘𝑇𝑇 cos (12 |�⃗⃗�𝜔 𝑐𝑐,𝑘𝑘|∆𝑐𝑐)
] 

𝜓𝜓𝑘𝑘 =
sin (12 |�⃗⃗�𝜔 𝑡𝑡,𝑘𝑘|∆𝑐𝑐)

|�⃗⃗�𝜔 𝑡𝑡,𝑘𝑘|
�⃗⃗�𝜔 𝑡𝑡,𝑘𝑘 

𝜁𝜁𝑘𝑘 =
sin (12 |�⃗⃗�𝜔 𝑐𝑐,𝑘𝑘|∆𝑐𝑐)

|�⃗⃗�𝜔 𝑐𝑐,𝑘𝑘|
�⃗⃗�𝜔 𝑐𝑐,𝑘𝑘 

 
Eq. (12) assumes that angular velocities are constant during the time interval. Propagation error increases as 
the time interval is lengthened, or when the torque and changes in angular velocities are large. We 
constructed a state equation which includes the relative position, velocity, orbital elements, and derivative 
values of the orbital elements (Zhang et al. 2014). Then, since the estimation for absolute orbital components 
is meaningless when the true value is propagated with nonlinear perturbations, absolute orbital components 
and their derivatives are omitted. The state equation can be constructed as follows. 

 
𝑋𝑋 = [𝑥𝑥, 𝑦𝑦, 𝑧𝑧, �̇�𝑥, �̇�𝑦, �̇�𝑧, 𝑟𝑟𝑐𝑐, 𝑟𝑟�̇�𝑐 , 𝜃𝜃, �̇�𝜃]𝑇𝑇 

= [𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3, 𝑥𝑥4, 𝑥𝑥5, 𝑥𝑥6, 𝑥𝑥7, 𝑥𝑥8, 𝑥𝑥9, 𝑥𝑥10]𝑇𝑇 
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The sensitivity matrix of the filter is also related to the relative equations of motion. The measurement of the 
vision sensor has the following relationship with the relative pose. 

 

𝐻𝐻𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 = [𝜕𝜕�⃗�𝑏 
𝜕𝜕𝜌𝜌 03×7] 

𝜕𝜕�⃗�𝑏 
𝜕𝜕𝜌𝜌 = 𝐴𝐴(𝑞𝑞 ) 𝜕𝜕𝑟𝑟 

𝜕𝜕𝜌𝜌  

         
𝜕𝜕𝑜𝑜 
𝜕𝜕�⃗⃗�𝜌 = 1

𝑠𝑠 [
(𝑌𝑌 + 𝑦𝑦)2 + (𝑍𝑍 + 𝑧𝑧)2 −(𝑋𝑋 + 𝑥𝑥)(𝑌𝑌 + 𝑦𝑦) −(𝑋𝑋 + 𝑥𝑥)(𝑍𝑍 + 𝑧𝑧)
−(𝑋𝑋 + 𝑥𝑥)(𝑌𝑌 + 𝑦𝑦) (𝑋𝑋 + 𝑥𝑥)2 + (𝑍𝑍 + 𝑧𝑧)2 −(𝑌𝑌 + 𝑦𝑦)(𝑍𝑍 + 𝑧𝑧)
−(𝑋𝑋 + 𝑥𝑥)(𝑍𝑍 + 𝑧𝑧) −(𝑌𝑌 + 𝑦𝑦)(𝑍𝑍 + 𝑧𝑧) (𝑌𝑌 + 𝑦𝑦)2 + (𝑋𝑋 + 𝑥𝑥)2

]        (14) 

s = [(𝑋𝑋 + 𝑥𝑥)2 + (𝑌𝑌 + 𝑦𝑦)2 + (𝑍𝑍 + 𝑧𝑧)2]3/2 

 
Therefore, the relative position can be estimated from the vision-based measurement. To estimate both 
relative position and attitude, we use Eq. (14) in conjunction with the attitude model. 

The relative attitude equation of the filter is slightly different from the absolute one. First, Eq. (11) has a 
similar shape to Eq. (6). Using relations of Eq. (11) and some relations of quaternion, the relative attitude 
equation is summarized as follows. 

 
                      δ𝑞𝑞 ̇𝑜𝑜𝑟𝑟𝑟𝑟 = 1

2 *�⃗⃗�𝜔 𝑜𝑜𝑟𝑟𝑟𝑟
0 + ⊗ δ𝑞𝑞 𝑜𝑜𝑟𝑟𝑟𝑟 − 1

2 δ𝑞𝑞 𝑜𝑜𝑟𝑟𝑟𝑟 ⊗ [�⃗⃗�𝜔 ̂𝑜𝑜𝑟𝑟𝑟𝑟
0

]                          (15) 

 
The angular velocity error is defined as follows. 

 
δ�⃗⃗�𝜔 𝑑𝑑 = �⃗⃗�𝜔 𝑑𝑑 − �⃗⃗�𝜔 ̂𝑑𝑑 

                                δ�⃗⃗�𝜔 𝐻𝐻 = �⃗⃗�𝜔 𝐻𝐻 − �⃗⃗�𝜔 ̂𝐻𝐻                                  (16) 

 
In Eq. (16), the subscript H denotes the component of the LVLH coordinate system. The angular velocity 
error of Eq. (16) can be expressed using the gyro sensor model of Eq. (3). 

 

 (13)
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The sensitivity matrix of the filter is also related to the relative equations of motion. The measurement of the 
vision sensor has the following relationship with the relative pose. 

 

𝐻𝐻𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 = [𝜕𝜕�⃗�𝑏 
𝜕𝜕𝜌𝜌 03×7] 

𝜕𝜕�⃗�𝑏 
𝜕𝜕𝜌𝜌 = 𝐴𝐴(𝑞𝑞 ) 𝜕𝜕𝑟𝑟 

𝜕𝜕𝜌𝜌  

         
𝜕𝜕𝑜𝑜 
𝜕𝜕�⃗⃗�𝜌 = 1

𝑠𝑠 [
(𝑌𝑌 + 𝑦𝑦)2 + (𝑍𝑍 + 𝑧𝑧)2 −(𝑋𝑋 + 𝑥𝑥)(𝑌𝑌 + 𝑦𝑦) −(𝑋𝑋 + 𝑥𝑥)(𝑍𝑍 + 𝑧𝑧)
−(𝑋𝑋 + 𝑥𝑥)(𝑌𝑌 + 𝑦𝑦) (𝑋𝑋 + 𝑥𝑥)2 + (𝑍𝑍 + 𝑧𝑧)2 −(𝑌𝑌 + 𝑦𝑦)(𝑍𝑍 + 𝑧𝑧)
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]        (14) 

s = [(𝑋𝑋 + 𝑥𝑥)2 + (𝑌𝑌 + 𝑦𝑦)2 + (𝑍𝑍 + 𝑧𝑧)2]3/2 

 
Therefore, the relative position can be estimated from the vision-based measurement. To estimate both 
relative position and attitude, we use Eq. (14) in conjunction with the attitude model. 

The relative attitude equation of the filter is slightly different from the absolute one. First, Eq. (11) has a 
similar shape to Eq. (6). Using relations of Eq. (11) and some relations of quaternion, the relative attitude 
equation is summarized as follows. 

 
                      δ𝑞𝑞 ̇𝑜𝑜𝑟𝑟𝑟𝑟 = 1

2 *�⃗⃗�𝜔 𝑜𝑜𝑟𝑟𝑟𝑟
0 + ⊗ δ𝑞𝑞 𝑜𝑜𝑟𝑟𝑟𝑟 − 1

2 δ𝑞𝑞 𝑜𝑜𝑟𝑟𝑟𝑟 ⊗ [�⃗⃗�𝜔 ̂𝑜𝑜𝑟𝑟𝑟𝑟
0

]                          (15) 

 
The angular velocity error is defined as follows. 

 
δ�⃗⃗�𝜔 𝑑𝑑 = �⃗⃗�𝜔 𝑑𝑑 − �⃗⃗�𝜔 ̂𝑑𝑑 

                                δ�⃗⃗�𝜔 𝐻𝐻 = �⃗⃗�𝜔 𝐻𝐻 − �⃗⃗�𝜔 ̂𝐻𝐻                                  (16) 

 
In Eq. (16), the subscript H denotes the component of the LVLH coordinate system. The angular velocity 
error of Eq. (16) can be expressed using the gyro sensor model of Eq. (3). 
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The sensitivity matrix of the filter is also related to the relative equations of motion. The measurement of the 
vision sensor has the following relationship with the relative pose. 

 

𝐻𝐻𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 = [𝜕𝜕�⃗�𝑏 
𝜕𝜕𝜌𝜌 03×7] 

𝜕𝜕�⃗�𝑏 
𝜕𝜕𝜌𝜌 = 𝐴𝐴(𝑞𝑞 ) 𝜕𝜕𝑟𝑟 

𝜕𝜕𝜌𝜌  

         
𝜕𝜕𝑜𝑜 
𝜕𝜕�⃗⃗�𝜌 = 1

𝑠𝑠 [
(𝑌𝑌 + 𝑦𝑦)2 + (𝑍𝑍 + 𝑧𝑧)2 −(𝑋𝑋 + 𝑥𝑥)(𝑌𝑌 + 𝑦𝑦) −(𝑋𝑋 + 𝑥𝑥)(𝑍𝑍 + 𝑧𝑧)
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]        (14) 

s = [(𝑋𝑋 + 𝑥𝑥)2 + (𝑌𝑌 + 𝑦𝑦)2 + (𝑍𝑍 + 𝑧𝑧)2]3/2 

 
Therefore, the relative position can be estimated from the vision-based measurement. To estimate both 
relative position and attitude, we use Eq. (14) in conjunction with the attitude model. 

The relative attitude equation of the filter is slightly different from the absolute one. First, Eq. (11) has a 
similar shape to Eq. (6). Using relations of Eq. (11) and some relations of quaternion, the relative attitude 
equation is summarized as follows. 

 
                      δ𝑞𝑞 ̇𝑜𝑜𝑟𝑟𝑟𝑟 = 1

2 *�⃗⃗�𝜔 𝑜𝑜𝑟𝑟𝑟𝑟
0 + ⊗ δ𝑞𝑞 𝑜𝑜𝑟𝑟𝑟𝑟 − 1

2 δ𝑞𝑞 𝑜𝑜𝑟𝑟𝑟𝑟 ⊗ [�⃗⃗�𝜔 ̂𝑜𝑜𝑟𝑟𝑟𝑟
0

]                          (15) 

 
The angular velocity error is defined as follows. 

 
δ�⃗⃗�𝜔 𝑑𝑑 = �⃗⃗�𝜔 𝑑𝑑 − �⃗⃗�𝜔 ̂𝑑𝑑 

                                δ�⃗⃗�𝜔 𝐻𝐻 = �⃗⃗�𝜔 𝐻𝐻 − �⃗⃗�𝜔 ̂𝐻𝐻                                  (16) 

 
In Eq. (16), the subscript H denotes the component of the LVLH coordinate system. The angular velocity 
error of Eq. (16) can be expressed using the gyro sensor model of Eq. (3). 
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                       (13) 

𝐹𝐹𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 = 𝜕𝜕𝑓𝑓(𝑋𝑋 )
𝜕𝜕𝑋𝑋 

 

G𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 = [
03×3
𝐼𝐼3×3
02×3
02×3

] 

𝑄𝑄𝑐𝑐,𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 = [
𝜎𝜎𝑥𝑥

2 0 0
0 𝜎𝜎𝑦𝑦

2 0
0 0 𝜎𝜎𝑧𝑧
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] 

𝑄𝑄𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 = G𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑄𝑄𝑐𝑐,𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝐺𝐺𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜
𝑇𝑇  

 
The sensitivity matrix of the filter is also related to the relative equations of motion. The measurement of the 
vision sensor has the following relationship with the relative pose. 

 

𝐻𝐻𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 = [𝜕𝜕�⃗�𝑏 
𝜕𝜕𝜌𝜌 03×7] 

𝜕𝜕�⃗�𝑏 
𝜕𝜕𝜌𝜌 = 𝐴𝐴(𝑞𝑞 ) 𝜕𝜕𝑟𝑟 

𝜕𝜕𝜌𝜌  

         
𝜕𝜕𝑜𝑜 
𝜕𝜕�⃗⃗�𝜌 = 1

𝑠𝑠 [
(𝑌𝑌 + 𝑦𝑦)2 + (𝑍𝑍 + 𝑧𝑧)2 −(𝑋𝑋 + 𝑥𝑥)(𝑌𝑌 + 𝑦𝑦) −(𝑋𝑋 + 𝑥𝑥)(𝑍𝑍 + 𝑧𝑧)
−(𝑋𝑋 + 𝑥𝑥)(𝑌𝑌 + 𝑦𝑦) (𝑋𝑋 + 𝑥𝑥)2 + (𝑍𝑍 + 𝑧𝑧)2 −(𝑌𝑌 + 𝑦𝑦)(𝑍𝑍 + 𝑧𝑧)
−(𝑋𝑋 + 𝑥𝑥)(𝑍𝑍 + 𝑧𝑧) −(𝑌𝑌 + 𝑦𝑦)(𝑍𝑍 + 𝑧𝑧) (𝑌𝑌 + 𝑦𝑦)2 + (𝑋𝑋 + 𝑥𝑥)2

]        (14) 

s = [(𝑋𝑋 + 𝑥𝑥)2 + (𝑌𝑌 + 𝑦𝑦)2 + (𝑍𝑍 + 𝑧𝑧)2]3/2 

 
Therefore, the relative position can be estimated from the vision-based measurement. To estimate both 
relative position and attitude, we use Eq. (14) in conjunction with the attitude model. 

The relative attitude equation of the filter is slightly different from the absolute one. First, Eq. (11) has a 
similar shape to Eq. (6). Using relations of Eq. (11) and some relations of quaternion, the relative attitude 
equation is summarized as follows. 

 
                      δ𝑞𝑞 ̇𝑜𝑜𝑟𝑟𝑟𝑟 = 1

2 *�⃗⃗�𝜔 𝑜𝑜𝑟𝑟𝑟𝑟
0 + ⊗ δ𝑞𝑞 𝑜𝑜𝑟𝑟𝑟𝑟 − 1

2 δ𝑞𝑞 𝑜𝑜𝑟𝑟𝑟𝑟 ⊗ [�⃗⃗�𝜔 ̂𝑜𝑜𝑟𝑟𝑟𝑟
0

]                          (15) 

 
The angular velocity error is defined as follows. 

 
δ�⃗⃗�𝜔 𝑑𝑑 = �⃗⃗�𝜔 𝑑𝑑 − �⃗⃗�𝜔 ̂𝑑𝑑 

                                δ�⃗⃗�𝜔 𝐻𝐻 = �⃗⃗�𝜔 𝐻𝐻 − �⃗⃗�𝜔 ̂𝐻𝐻                                  (16) 

 
In Eq. (16), the subscript H denotes the component of the LVLH coordinate system. The angular velocity 
error of Eq. (16) can be expressed using the gyro sensor model of Eq. (3). 
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𝐼𝐼3×3
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𝑄𝑄𝑐𝑐,𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 = [
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𝑄𝑄𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 = G𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑄𝑄𝑐𝑐,𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝐺𝐺𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜
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The sensitivity matrix of the filter is also related to the relative equations of motion. The measurement of the 
vision sensor has the following relationship with the relative pose. 

 

𝐻𝐻𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 = [𝜕𝜕�⃗�𝑏 
𝜕𝜕𝜌𝜌 03×7] 

𝜕𝜕�⃗�𝑏 
𝜕𝜕𝜌𝜌 = 𝐴𝐴(𝑞𝑞 ) 𝜕𝜕𝑟𝑟 

𝜕𝜕𝜌𝜌  

         
𝜕𝜕𝑜𝑜 
𝜕𝜕�⃗⃗�𝜌 = 1

𝑠𝑠 [
(𝑌𝑌 + 𝑦𝑦)2 + (𝑍𝑍 + 𝑧𝑧)2 −(𝑋𝑋 + 𝑥𝑥)(𝑌𝑌 + 𝑦𝑦) −(𝑋𝑋 + 𝑥𝑥)(𝑍𝑍 + 𝑧𝑧)
−(𝑋𝑋 + 𝑥𝑥)(𝑌𝑌 + 𝑦𝑦) (𝑋𝑋 + 𝑥𝑥)2 + (𝑍𝑍 + 𝑧𝑧)2 −(𝑌𝑌 + 𝑦𝑦)(𝑍𝑍 + 𝑧𝑧)
−(𝑋𝑋 + 𝑥𝑥)(𝑍𝑍 + 𝑧𝑧) −(𝑌𝑌 + 𝑦𝑦)(𝑍𝑍 + 𝑧𝑧) (𝑌𝑌 + 𝑦𝑦)2 + (𝑋𝑋 + 𝑥𝑥)2

]        (14) 

s = [(𝑋𝑋 + 𝑥𝑥)2 + (𝑌𝑌 + 𝑦𝑦)2 + (𝑍𝑍 + 𝑧𝑧)2]3/2 

 
Therefore, the relative position can be estimated from the vision-based measurement. To estimate both 
relative position and attitude, we use Eq. (14) in conjunction with the attitude model. 

The relative attitude equation of the filter is slightly different from the absolute one. First, Eq. (11) has a 
similar shape to Eq. (6). Using relations of Eq. (11) and some relations of quaternion, the relative attitude 
equation is summarized as follows. 

 
                      δ𝑞𝑞 ̇𝑜𝑜𝑟𝑟𝑟𝑟 = 1

2 *�⃗⃗�𝜔 𝑜𝑜𝑟𝑟𝑟𝑟
0 + ⊗ δ𝑞𝑞 𝑜𝑜𝑟𝑟𝑟𝑟 − 1

2 δ𝑞𝑞 𝑜𝑜𝑟𝑟𝑟𝑟 ⊗ [�⃗⃗�𝜔 ̂𝑜𝑜𝑟𝑟𝑟𝑟
0

]                          (15) 

 
The angular velocity error is defined as follows. 

 
δ�⃗⃗�𝜔 𝑑𝑑 = �⃗⃗�𝜔 𝑑𝑑 − �⃗⃗�𝜔 ̂𝑑𝑑 

                                δ�⃗⃗�𝜔 𝐻𝐻 = �⃗⃗�𝜔 𝐻𝐻 − �⃗⃗�𝜔 ̂𝐻𝐻                                  (16) 

 
In Eq. (16), the subscript H denotes the component of the LVLH coordinate system. The angular velocity 
error of Eq. (16) can be expressed using the gyro sensor model of Eq. (3). 

 

The sensitivity matrix of the filter is also related to the 

relative equations of motion. The measurement of the vision 

sensor has the following relationship with the relative pose.
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                       (13) 

𝐹𝐹𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 = 𝜕𝜕𝑓𝑓(𝑋𝑋 )
𝜕𝜕𝑋𝑋 

 

G𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 = [
03×3
𝐼𝐼3×3
02×3
02×3

] 

𝑄𝑄𝑐𝑐,𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 = [
𝜎𝜎𝑥𝑥

2 0 0
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2 0
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2
] 

𝑄𝑄𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 = G𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑄𝑄𝑐𝑐,𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝐺𝐺𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜
𝑇𝑇  

 
The sensitivity matrix of the filter is also related to the relative equations of motion. The measurement of the 
vision sensor has the following relationship with the relative pose. 

 

𝐻𝐻𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 = [𝜕𝜕�⃗�𝑏 
𝜕𝜕𝜌𝜌 03×7] 

𝜕𝜕�⃗�𝑏 
𝜕𝜕𝜌𝜌 = 𝐴𝐴(𝑞𝑞 ) 𝜕𝜕𝑟𝑟 

𝜕𝜕𝜌𝜌  

         
𝜕𝜕𝑜𝑜 
𝜕𝜕�⃗⃗�𝜌 = 1

𝑠𝑠 [
(𝑌𝑌 + 𝑦𝑦)2 + (𝑍𝑍 + 𝑧𝑧)2 −(𝑋𝑋 + 𝑥𝑥)(𝑌𝑌 + 𝑦𝑦) −(𝑋𝑋 + 𝑥𝑥)(𝑍𝑍 + 𝑧𝑧)
−(𝑋𝑋 + 𝑥𝑥)(𝑌𝑌 + 𝑦𝑦) (𝑋𝑋 + 𝑥𝑥)2 + (𝑍𝑍 + 𝑧𝑧)2 −(𝑌𝑌 + 𝑦𝑦)(𝑍𝑍 + 𝑧𝑧)
−(𝑋𝑋 + 𝑥𝑥)(𝑍𝑍 + 𝑧𝑧) −(𝑌𝑌 + 𝑦𝑦)(𝑍𝑍 + 𝑧𝑧) (𝑌𝑌 + 𝑦𝑦)2 + (𝑋𝑋 + 𝑥𝑥)2

]        (14) 

s = [(𝑋𝑋 + 𝑥𝑥)2 + (𝑌𝑌 + 𝑦𝑦)2 + (𝑍𝑍 + 𝑧𝑧)2]3/2 

 
Therefore, the relative position can be estimated from the vision-based measurement. To estimate both 
relative position and attitude, we use Eq. (14) in conjunction with the attitude model. 

The relative attitude equation of the filter is slightly different from the absolute one. First, Eq. (11) has a 
similar shape to Eq. (6). Using relations of Eq. (11) and some relations of quaternion, the relative attitude 
equation is summarized as follows. 

 
                      δ𝑞𝑞 ̇𝑜𝑜𝑟𝑟𝑟𝑟 = 1

2 *�⃗⃗�𝜔 𝑜𝑜𝑟𝑟𝑟𝑟
0 + ⊗ δ𝑞𝑞 𝑜𝑜𝑟𝑟𝑟𝑟 − 1

2 δ𝑞𝑞 𝑜𝑜𝑟𝑟𝑟𝑟 ⊗ [�⃗⃗�𝜔 ̂𝑜𝑜𝑟𝑟𝑟𝑟
0

]                          (15) 

 
The angular velocity error is defined as follows. 

 
δ�⃗⃗�𝜔 𝑑𝑑 = �⃗⃗�𝜔 𝑑𝑑 − �⃗⃗�𝜔 ̂𝑑𝑑 

                                δ�⃗⃗�𝜔 𝐻𝐻 = �⃗⃗�𝜔 𝐻𝐻 − �⃗⃗�𝜔 ̂𝐻𝐻                                  (16) 

 
In Eq. (16), the subscript H denotes the component of the LVLH coordinate system. The angular velocity 
error of Eq. (16) can be expressed using the gyro sensor model of Eq. (3). 
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03×3
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2 0 0
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2
] 

𝑄𝑄𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 = G𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑄𝑄𝑐𝑐,𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝐺𝐺𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜
𝑇𝑇  

 
The sensitivity matrix of the filter is also related to the relative equations of motion. The measurement of the 
vision sensor has the following relationship with the relative pose. 

 

𝐻𝐻𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 = [𝜕𝜕�⃗�𝑏 
𝜕𝜕𝜌𝜌 03×7] 

𝜕𝜕�⃗�𝑏 
𝜕𝜕𝜌𝜌 = 𝐴𝐴(𝑞𝑞 ) 𝜕𝜕𝑟𝑟 

𝜕𝜕𝜌𝜌  

         
𝜕𝜕𝑜𝑜 
𝜕𝜕�⃗⃗�𝜌 = 1

𝑠𝑠 [
(𝑌𝑌 + 𝑦𝑦)2 + (𝑍𝑍 + 𝑧𝑧)2 −(𝑋𝑋 + 𝑥𝑥)(𝑌𝑌 + 𝑦𝑦) −(𝑋𝑋 + 𝑥𝑥)(𝑍𝑍 + 𝑧𝑧)
−(𝑋𝑋 + 𝑥𝑥)(𝑌𝑌 + 𝑦𝑦) (𝑋𝑋 + 𝑥𝑥)2 + (𝑍𝑍 + 𝑧𝑧)2 −(𝑌𝑌 + 𝑦𝑦)(𝑍𝑍 + 𝑧𝑧)
−(𝑋𝑋 + 𝑥𝑥)(𝑍𝑍 + 𝑧𝑧) −(𝑌𝑌 + 𝑦𝑦)(𝑍𝑍 + 𝑧𝑧) (𝑌𝑌 + 𝑦𝑦)2 + (𝑋𝑋 + 𝑥𝑥)2

]        (14) 

s = [(𝑋𝑋 + 𝑥𝑥)2 + (𝑌𝑌 + 𝑦𝑦)2 + (𝑍𝑍 + 𝑧𝑧)2]3/2 

 
Therefore, the relative position can be estimated from the vision-based measurement. To estimate both 
relative position and attitude, we use Eq. (14) in conjunction with the attitude model. 

The relative attitude equation of the filter is slightly different from the absolute one. First, Eq. (11) has a 
similar shape to Eq. (6). Using relations of Eq. (11) and some relations of quaternion, the relative attitude 
equation is summarized as follows. 

 
                      δ𝑞𝑞 ̇𝑜𝑜𝑟𝑟𝑟𝑟 = 1

2 *�⃗⃗�𝜔 𝑜𝑜𝑟𝑟𝑟𝑟
0 + ⊗ δ𝑞𝑞 𝑜𝑜𝑟𝑟𝑟𝑟 − 1

2 δ𝑞𝑞 𝑜𝑜𝑟𝑟𝑟𝑟 ⊗ [�⃗⃗�𝜔 ̂𝑜𝑜𝑟𝑟𝑟𝑟
0

]                          (15) 

 
The angular velocity error is defined as follows. 

 
δ�⃗⃗�𝜔 𝑑𝑑 = �⃗⃗�𝜔 𝑑𝑑 − �⃗⃗�𝜔 ̂𝑑𝑑 

                                δ�⃗⃗�𝜔 𝐻𝐻 = �⃗⃗�𝜔 𝐻𝐻 − �⃗⃗�𝜔 ̂𝐻𝐻                                  (16) 

 
In Eq. (16), the subscript H denotes the component of the LVLH coordinate system. The angular velocity 
error of Eq. (16) can be expressed using the gyro sensor model of Eq. (3). 

 

8 

 

                 𝑋𝑋 ̇ = 𝑓𝑓(𝑋𝑋 ) =

[
 
 
 
 
 
 
 
 
 
 
 
 
 

𝑥𝑥4
𝑥𝑥5
𝑥𝑥6

𝑥𝑥1𝑥𝑥10
2 (1 + 2𝑥𝑥7

𝑝𝑝 ) + 2𝑥𝑥10(𝑥𝑥5 − 𝑥𝑥2𝑥𝑥8
𝑥𝑥7

)

−2𝑥𝑥10 (𝑥𝑥4 − 𝑥𝑥1𝑥𝑥8
𝑥𝑥7

) + 𝑥𝑥2𝑥𝑥10
2 (1 − 𝑥𝑥7

𝑝𝑝 )

− 𝑥𝑥7𝑥𝑥10
2 𝑥𝑥3
𝑝𝑝

𝑥𝑥8
𝑥𝑥7𝑥𝑥10

2 (1 − 𝑥𝑥7
𝑝𝑝 )

𝑥𝑥10

− 2𝑥𝑥8𝑥𝑥10
𝑥𝑥7 ]

 
 
 
 
 
 
 
 
 
 
 
 
 

                       (13) 

𝐹𝐹𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 = 𝜕𝜕𝑓𝑓(𝑋𝑋 )
𝜕𝜕𝑋𝑋 

 

G𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 = [
03×3
𝐼𝐼3×3
02×3
02×3

] 

𝑄𝑄𝑐𝑐,𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 = [
𝜎𝜎𝑥𝑥

2 0 0
0 𝜎𝜎𝑦𝑦

2 0
0 0 𝜎𝜎𝑧𝑧

2
] 

𝑄𝑄𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 = G𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑄𝑄𝑐𝑐,𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝐺𝐺𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜
𝑇𝑇  

 
The sensitivity matrix of the filter is also related to the relative equations of motion. The measurement of the 
vision sensor has the following relationship with the relative pose. 

 

𝐻𝐻𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 = [𝜕𝜕�⃗�𝑏 
𝜕𝜕𝜌𝜌 03×7] 

𝜕𝜕�⃗�𝑏 
𝜕𝜕𝜌𝜌 = 𝐴𝐴(𝑞𝑞 ) 𝜕𝜕𝑟𝑟 

𝜕𝜕𝜌𝜌  

         
𝜕𝜕𝑜𝑜 
𝜕𝜕�⃗⃗�𝜌 = 1

𝑠𝑠 [
(𝑌𝑌 + 𝑦𝑦)2 + (𝑍𝑍 + 𝑧𝑧)2 −(𝑋𝑋 + 𝑥𝑥)(𝑌𝑌 + 𝑦𝑦) −(𝑋𝑋 + 𝑥𝑥)(𝑍𝑍 + 𝑧𝑧)
−(𝑋𝑋 + 𝑥𝑥)(𝑌𝑌 + 𝑦𝑦) (𝑋𝑋 + 𝑥𝑥)2 + (𝑍𝑍 + 𝑧𝑧)2 −(𝑌𝑌 + 𝑦𝑦)(𝑍𝑍 + 𝑧𝑧)
−(𝑋𝑋 + 𝑥𝑥)(𝑍𝑍 + 𝑧𝑧) −(𝑌𝑌 + 𝑦𝑦)(𝑍𝑍 + 𝑧𝑧) (𝑌𝑌 + 𝑦𝑦)2 + (𝑋𝑋 + 𝑥𝑥)2

]        (14) 

s = [(𝑋𝑋 + 𝑥𝑥)2 + (𝑌𝑌 + 𝑦𝑦)2 + (𝑍𝑍 + 𝑧𝑧)2]3/2 

 
Therefore, the relative position can be estimated from the vision-based measurement. To estimate both 
relative position and attitude, we use Eq. (14) in conjunction with the attitude model. 

The relative attitude equation of the filter is slightly different from the absolute one. First, Eq. (11) has a 
similar shape to Eq. (6). Using relations of Eq. (11) and some relations of quaternion, the relative attitude 
equation is summarized as follows. 

 
                      δ𝑞𝑞 ̇𝑜𝑜𝑟𝑟𝑟𝑟 = 1

2 *�⃗⃗�𝜔 𝑜𝑜𝑟𝑟𝑟𝑟
0 + ⊗ δ𝑞𝑞 𝑜𝑜𝑟𝑟𝑟𝑟 − 1

2 δ𝑞𝑞 𝑜𝑜𝑟𝑟𝑟𝑟 ⊗ [�⃗⃗�𝜔 ̂𝑜𝑜𝑟𝑟𝑟𝑟
0

]                          (15) 

 
The angular velocity error is defined as follows. 

 
δ�⃗⃗�𝜔 𝑑𝑑 = �⃗⃗�𝜔 𝑑𝑑 − �⃗⃗�𝜔 ̂𝑑𝑑 

                                δ�⃗⃗�𝜔 𝐻𝐻 = �⃗⃗�𝜔 𝐻𝐻 − �⃗⃗�𝜔 ̂𝐻𝐻                                  (16) 

 
In Eq. (16), the subscript H denotes the component of the LVLH coordinate system. The angular velocity 
error of Eq. (16) can be expressed using the gyro sensor model of Eq. (3). 

 

8 

 

                 𝑋𝑋 ̇ = 𝑓𝑓(𝑋𝑋 ) =

[
 
 
 
 
 
 
 
 
 
 
 
 
 

𝑥𝑥4
𝑥𝑥5
𝑥𝑥6

𝑥𝑥1𝑥𝑥10
2 (1 + 2𝑥𝑥7

𝑝𝑝 ) + 2𝑥𝑥10(𝑥𝑥5 − 𝑥𝑥2𝑥𝑥8
𝑥𝑥7

)

−2𝑥𝑥10 (𝑥𝑥4 − 𝑥𝑥1𝑥𝑥8
𝑥𝑥7

) + 𝑥𝑥2𝑥𝑥10
2 (1 − 𝑥𝑥7

𝑝𝑝 )

− 𝑥𝑥7𝑥𝑥10
2 𝑥𝑥3
𝑝𝑝

𝑥𝑥8
𝑥𝑥7𝑥𝑥10

2 (1 − 𝑥𝑥7
𝑝𝑝 )

𝑥𝑥10

− 2𝑥𝑥8𝑥𝑥10
𝑥𝑥7 ]

 
 
 
 
 
 
 
 
 
 
 
 
 

                       (13) 

𝐹𝐹𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 = 𝜕𝜕𝑓𝑓(𝑋𝑋 )
𝜕𝜕𝑋𝑋 

 

G𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 = [
03×3
𝐼𝐼3×3
02×3
02×3

] 

𝑄𝑄𝑐𝑐,𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 = [
𝜎𝜎𝑥𝑥

2 0 0
0 𝜎𝜎𝑦𝑦

2 0
0 0 𝜎𝜎𝑧𝑧

2
] 

𝑄𝑄𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 = G𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑄𝑄𝑐𝑐,𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝐺𝐺𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜
𝑇𝑇  

 
The sensitivity matrix of the filter is also related to the relative equations of motion. The measurement of the 
vision sensor has the following relationship with the relative pose. 

 

𝐻𝐻𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 = [𝜕𝜕�⃗�𝑏 
𝜕𝜕𝜌𝜌 03×7] 

𝜕𝜕�⃗�𝑏 
𝜕𝜕𝜌𝜌 = 𝐴𝐴(𝑞𝑞 ) 𝜕𝜕𝑟𝑟 

𝜕𝜕𝜌𝜌  

         
𝜕𝜕𝑜𝑜 
𝜕𝜕�⃗⃗�𝜌 = 1

𝑠𝑠 [
(𝑌𝑌 + 𝑦𝑦)2 + (𝑍𝑍 + 𝑧𝑧)2 −(𝑋𝑋 + 𝑥𝑥)(𝑌𝑌 + 𝑦𝑦) −(𝑋𝑋 + 𝑥𝑥)(𝑍𝑍 + 𝑧𝑧)
−(𝑋𝑋 + 𝑥𝑥)(𝑌𝑌 + 𝑦𝑦) (𝑋𝑋 + 𝑥𝑥)2 + (𝑍𝑍 + 𝑧𝑧)2 −(𝑌𝑌 + 𝑦𝑦)(𝑍𝑍 + 𝑧𝑧)
−(𝑋𝑋 + 𝑥𝑥)(𝑍𝑍 + 𝑧𝑧) −(𝑌𝑌 + 𝑦𝑦)(𝑍𝑍 + 𝑧𝑧) (𝑌𝑌 + 𝑦𝑦)2 + (𝑋𝑋 + 𝑥𝑥)2

]        (14) 

s = [(𝑋𝑋 + 𝑥𝑥)2 + (𝑌𝑌 + 𝑦𝑦)2 + (𝑍𝑍 + 𝑧𝑧)2]3/2 

 
Therefore, the relative position can be estimated from the vision-based measurement. To estimate both 
relative position and attitude, we use Eq. (14) in conjunction with the attitude model. 

The relative attitude equation of the filter is slightly different from the absolute one. First, Eq. (11) has a 
similar shape to Eq. (6). Using relations of Eq. (11) and some relations of quaternion, the relative attitude 
equation is summarized as follows. 

 
                      δ𝑞𝑞 ̇𝑜𝑜𝑟𝑟𝑟𝑟 = 1

2 *�⃗⃗�𝜔 𝑜𝑜𝑟𝑟𝑟𝑟
0 + ⊗ δ𝑞𝑞 𝑜𝑜𝑟𝑟𝑟𝑟 − 1

2 δ𝑞𝑞 𝑜𝑜𝑟𝑟𝑟𝑟 ⊗ [�⃗⃗�𝜔 ̂𝑜𝑜𝑟𝑟𝑟𝑟
0

]                          (15) 

 
The angular velocity error is defined as follows. 

 
δ�⃗⃗�𝜔 𝑑𝑑 = �⃗⃗�𝜔 𝑑𝑑 − �⃗⃗�𝜔 ̂𝑑𝑑 

                                δ�⃗⃗�𝜔 𝐻𝐻 = �⃗⃗�𝜔 𝐻𝐻 − �⃗⃗�𝜔 ̂𝐻𝐻                                  (16) 

 
In Eq. (16), the subscript H denotes the component of the LVLH coordinate system. The angular velocity 
error of Eq. (16) can be expressed using the gyro sensor model of Eq. (3). 

 

 (14)

Therefore, the relative position can be estimated from 

the vision-based measurement. To estimate both relative 

position and attitude, we use Eq. (14) in conjunction with 

the attitude model.

The relative attitude equation of the filter is slightly 

different from the absolute one. First, Eq. (11) has a similar 

shape to Eq. (6). Using relations of Eq. (11) and some relations 

of quaternion, the relative attitude equation is summarized as 

follows.
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                 𝑋𝑋 ̇ = 𝑓𝑓(𝑋𝑋 ) =

[
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𝑥𝑥7

)

−2𝑥𝑥10 (𝑥𝑥4 − 𝑥𝑥1𝑥𝑥8
𝑥𝑥7

) + 𝑥𝑥2𝑥𝑥10
2 (1 − 𝑥𝑥7

𝑝𝑝 )

− 𝑥𝑥7𝑥𝑥10
2 𝑥𝑥3
𝑝𝑝

𝑥𝑥8
𝑥𝑥7𝑥𝑥10

2 (1 − 𝑥𝑥7
𝑝𝑝 )

𝑥𝑥10

− 2𝑥𝑥8𝑥𝑥10
𝑥𝑥7 ]

 
 
 
 
 
 
 
 
 
 
 
 
 

                       (13) 

𝐹𝐹𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 = 𝜕𝜕𝑓𝑓(𝑋𝑋 )
𝜕𝜕𝑋𝑋 

 

G𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 = [
03×3
𝐼𝐼3×3
02×3
02×3

] 

𝑄𝑄𝑐𝑐,𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 = [
𝜎𝜎𝑥𝑥

2 0 0
0 𝜎𝜎𝑦𝑦

2 0
0 0 𝜎𝜎𝑧𝑧

2
] 

𝑄𝑄𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 = G𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑄𝑄𝑐𝑐,𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝐺𝐺𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜
𝑇𝑇  

 
The sensitivity matrix of the filter is also related to the relative equations of motion. The measurement of the 
vision sensor has the following relationship with the relative pose. 

 

𝐻𝐻𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 = [𝜕𝜕�⃗�𝑏 
𝜕𝜕𝜌𝜌 03×7] 

𝜕𝜕�⃗�𝑏 
𝜕𝜕𝜌𝜌 = 𝐴𝐴(𝑞𝑞 ) 𝜕𝜕𝑟𝑟 

𝜕𝜕𝜌𝜌  

         
𝜕𝜕𝑜𝑜 
𝜕𝜕�⃗⃗�𝜌 = 1

𝑠𝑠 [
(𝑌𝑌 + 𝑦𝑦)2 + (𝑍𝑍 + 𝑧𝑧)2 −(𝑋𝑋 + 𝑥𝑥)(𝑌𝑌 + 𝑦𝑦) −(𝑋𝑋 + 𝑥𝑥)(𝑍𝑍 + 𝑧𝑧)
−(𝑋𝑋 + 𝑥𝑥)(𝑌𝑌 + 𝑦𝑦) (𝑋𝑋 + 𝑥𝑥)2 + (𝑍𝑍 + 𝑧𝑧)2 −(𝑌𝑌 + 𝑦𝑦)(𝑍𝑍 + 𝑧𝑧)
−(𝑋𝑋 + 𝑥𝑥)(𝑍𝑍 + 𝑧𝑧) −(𝑌𝑌 + 𝑦𝑦)(𝑍𝑍 + 𝑧𝑧) (𝑌𝑌 + 𝑦𝑦)2 + (𝑋𝑋 + 𝑥𝑥)2

]        (14) 

s = [(𝑋𝑋 + 𝑥𝑥)2 + (𝑌𝑌 + 𝑦𝑦)2 + (𝑍𝑍 + 𝑧𝑧)2]3/2 

 
Therefore, the relative position can be estimated from the vision-based measurement. To estimate both 
relative position and attitude, we use Eq. (14) in conjunction with the attitude model. 

The relative attitude equation of the filter is slightly different from the absolute one. First, Eq. (11) has a 
similar shape to Eq. (6). Using relations of Eq. (11) and some relations of quaternion, the relative attitude 
equation is summarized as follows. 

 
                      δ𝑞𝑞 ̇𝑜𝑜𝑟𝑟𝑟𝑟 = 1

2 *�⃗⃗�𝜔 𝑜𝑜𝑟𝑟𝑟𝑟
0 + ⊗ δ𝑞𝑞 𝑜𝑜𝑟𝑟𝑟𝑟 − 1

2 δ𝑞𝑞 𝑜𝑜𝑟𝑟𝑟𝑟 ⊗ [�⃗⃗�𝜔 ̂𝑜𝑜𝑟𝑟𝑟𝑟
0

]                          (15) 

 
The angular velocity error is defined as follows. 

 
δ�⃗⃗�𝜔 𝑑𝑑 = �⃗⃗�𝜔 𝑑𝑑 − �⃗⃗�𝜔 ̂𝑑𝑑 

                                δ�⃗⃗�𝜔 𝐻𝐻 = �⃗⃗�𝜔 𝐻𝐻 − �⃗⃗�𝜔 ̂𝐻𝐻                                  (16) 

 
In Eq. (16), the subscript H denotes the component of the LVLH coordinate system. The angular velocity 
error of Eq. (16) can be expressed using the gyro sensor model of Eq. (3). 

 

 (15)

The angular velocity error is defined as follows.
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                 𝑋𝑋 ̇ = 𝑓𝑓(𝑋𝑋 ) =
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𝑥𝑥7

)

−2𝑥𝑥10 (𝑥𝑥4 − 𝑥𝑥1𝑥𝑥8
𝑥𝑥7

) + 𝑥𝑥2𝑥𝑥10
2 (1 − 𝑥𝑥7

𝑝𝑝 )

− 𝑥𝑥7𝑥𝑥10
2 𝑥𝑥3
𝑝𝑝

𝑥𝑥8
𝑥𝑥7𝑥𝑥10

2 (1 − 𝑥𝑥7
𝑝𝑝 )

𝑥𝑥10

− 2𝑥𝑥8𝑥𝑥10
𝑥𝑥7 ]

 
 
 
 
 
 
 
 
 
 
 
 
 

                       (13) 

𝐹𝐹𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 = 𝜕𝜕𝑓𝑓(𝑋𝑋 )
𝜕𝜕𝑋𝑋 

 

G𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 = [
03×3
𝐼𝐼3×3
02×3
02×3

] 

𝑄𝑄𝑐𝑐,𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 = [
𝜎𝜎𝑥𝑥

2 0 0
0 𝜎𝜎𝑦𝑦

2 0
0 0 𝜎𝜎𝑧𝑧

2
] 

𝑄𝑄𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 = G𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑄𝑄𝑐𝑐,𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝐺𝐺𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜
𝑇𝑇  

 
The sensitivity matrix of the filter is also related to the relative equations of motion. The measurement of the 
vision sensor has the following relationship with the relative pose. 

 

𝐻𝐻𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 = [𝜕𝜕�⃗�𝑏 
𝜕𝜕𝜌𝜌 03×7] 

𝜕𝜕�⃗�𝑏 
𝜕𝜕𝜌𝜌 = 𝐴𝐴(𝑞𝑞 ) 𝜕𝜕𝑟𝑟 

𝜕𝜕𝜌𝜌  

         
𝜕𝜕𝑜𝑜 
𝜕𝜕�⃗⃗�𝜌 = 1

𝑠𝑠 [
(𝑌𝑌 + 𝑦𝑦)2 + (𝑍𝑍 + 𝑧𝑧)2 −(𝑋𝑋 + 𝑥𝑥)(𝑌𝑌 + 𝑦𝑦) −(𝑋𝑋 + 𝑥𝑥)(𝑍𝑍 + 𝑧𝑧)
−(𝑋𝑋 + 𝑥𝑥)(𝑌𝑌 + 𝑦𝑦) (𝑋𝑋 + 𝑥𝑥)2 + (𝑍𝑍 + 𝑧𝑧)2 −(𝑌𝑌 + 𝑦𝑦)(𝑍𝑍 + 𝑧𝑧)
−(𝑋𝑋 + 𝑥𝑥)(𝑍𝑍 + 𝑧𝑧) −(𝑌𝑌 + 𝑦𝑦)(𝑍𝑍 + 𝑧𝑧) (𝑌𝑌 + 𝑦𝑦)2 + (𝑋𝑋 + 𝑥𝑥)2

]        (14) 

s = [(𝑋𝑋 + 𝑥𝑥)2 + (𝑌𝑌 + 𝑦𝑦)2 + (𝑍𝑍 + 𝑧𝑧)2]3/2 

 
Therefore, the relative position can be estimated from the vision-based measurement. To estimate both 
relative position and attitude, we use Eq. (14) in conjunction with the attitude model. 

The relative attitude equation of the filter is slightly different from the absolute one. First, Eq. (11) has a 
similar shape to Eq. (6). Using relations of Eq. (11) and some relations of quaternion, the relative attitude 
equation is summarized as follows. 

 
                      δ𝑞𝑞 ̇𝑜𝑜𝑟𝑟𝑟𝑟 = 1

2 *�⃗⃗�𝜔 𝑜𝑜𝑟𝑟𝑟𝑟
0 + ⊗ δ𝑞𝑞 𝑜𝑜𝑟𝑟𝑟𝑟 − 1

2 δ𝑞𝑞 𝑜𝑜𝑟𝑟𝑟𝑟 ⊗ [�⃗⃗�𝜔 ̂𝑜𝑜𝑟𝑟𝑟𝑟
0

]                          (15) 

 
The angular velocity error is defined as follows. 

 
δ�⃗⃗�𝜔 𝑑𝑑 = �⃗⃗�𝜔 𝑑𝑑 − �⃗⃗�𝜔 ̂𝑑𝑑 

                                δ�⃗⃗�𝜔 𝐻𝐻 = �⃗⃗�𝜔 𝐻𝐻 − �⃗⃗�𝜔 ̂𝐻𝐻                                  (16) 

 
In Eq. (16), the subscript H denotes the component of the LVLH coordinate system. The angular velocity 
error of Eq. (16) can be expressed using the gyro sensor model of Eq. (3). 
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The sensitivity matrix of the filter is also related to the relative equations of motion. The measurement of the 
vision sensor has the following relationship with the relative pose. 

 

𝐻𝐻𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 = [𝜕𝜕�⃗�𝑏 
𝜕𝜕𝜌𝜌 03×7] 

𝜕𝜕�⃗�𝑏 
𝜕𝜕𝜌𝜌 = 𝐴𝐴(𝑞𝑞 ) 𝜕𝜕𝑟𝑟 

𝜕𝜕𝜌𝜌  

         
𝜕𝜕𝑜𝑜 
𝜕𝜕�⃗⃗�𝜌 = 1

𝑠𝑠 [
(𝑌𝑌 + 𝑦𝑦)2 + (𝑍𝑍 + 𝑧𝑧)2 −(𝑋𝑋 + 𝑥𝑥)(𝑌𝑌 + 𝑦𝑦) −(𝑋𝑋 + 𝑥𝑥)(𝑍𝑍 + 𝑧𝑧)
−(𝑋𝑋 + 𝑥𝑥)(𝑌𝑌 + 𝑦𝑦) (𝑋𝑋 + 𝑥𝑥)2 + (𝑍𝑍 + 𝑧𝑧)2 −(𝑌𝑌 + 𝑦𝑦)(𝑍𝑍 + 𝑧𝑧)
−(𝑋𝑋 + 𝑥𝑥)(𝑍𝑍 + 𝑧𝑧) −(𝑌𝑌 + 𝑦𝑦)(𝑍𝑍 + 𝑧𝑧) (𝑌𝑌 + 𝑦𝑦)2 + (𝑋𝑋 + 𝑥𝑥)2

]        (14) 

s = [(𝑋𝑋 + 𝑥𝑥)2 + (𝑌𝑌 + 𝑦𝑦)2 + (𝑍𝑍 + 𝑧𝑧)2]3/2 

 
Therefore, the relative position can be estimated from the vision-based measurement. To estimate both 
relative position and attitude, we use Eq. (14) in conjunction with the attitude model. 

The relative attitude equation of the filter is slightly different from the absolute one. First, Eq. (11) has a 
similar shape to Eq. (6). Using relations of Eq. (11) and some relations of quaternion, the relative attitude 
equation is summarized as follows. 

 
                      δ𝑞𝑞 ̇𝑜𝑜𝑟𝑟𝑟𝑟 = 1

2 *�⃗⃗�𝜔 𝑜𝑜𝑟𝑟𝑟𝑟
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The angular velocity error is defined as follows. 

 
δ�⃗⃗�𝜔 𝑑𝑑 = �⃗⃗�𝜔 𝑑𝑑 − �⃗⃗�𝜔 ̂𝑑𝑑 

                                δ�⃗⃗�𝜔 𝐻𝐻 = �⃗⃗�𝜔 𝐻𝐻 − �⃗⃗�𝜔 ̂𝐻𝐻                                  (16) 

 
In Eq. (16), the subscript H denotes the component of the LVLH coordinate system. The angular velocity 
error of Eq. (16) can be expressed using the gyro sensor model of Eq. (3). 

 

 (16)

In Eq. (16), the subscript H denotes the component of the 

LVLH coordinate system. The angular velocity error of Eq. 

(16) can be expressed using the gyro sensor model of Eq. (3).
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�⃗⃗�𝜔 ̂ = �̃�𝜔 − 𝛽𝛽 ̂𝑑𝑑 

             δ�⃗⃗�𝜔 𝑑𝑑 = �⃗⃗�𝜔 𝑑𝑑 − �⃗⃗�𝜔 ̂𝑑𝑑 = �̃�𝜔 − 𝛽𝛽 𝑑𝑑 − 𝜂𝜂𝑣𝑣 − (�̃�𝜔 − 𝛽𝛽 ̂𝑑𝑑) = −(𝛿𝛿𝛽𝛽 𝑑𝑑 + 𝜂𝜂𝑑𝑑𝑣𝑣)               (17) 

δ�⃗⃗�𝜔 𝐻𝐻 = �⃗⃗�𝜔 𝐻𝐻 − �⃗⃗�𝜔 ̂𝐻𝐻 = �̂�𝑛 ∙ 𝛿𝛿�̇�𝜃 
�̂�𝑛 = [0 0 1]𝑇𝑇, 𝛿𝛿�̇�𝜃 = �̇�𝜃 − �̇̂�𝜃 

 
With the following procedures in (Kim et al. 2007), the state equations can be constructed as follows. 

 
δ𝛼𝛼 ̇𝑑𝑑/𝐻𝐻 = −[�⃗⃗�𝜔 ̂𝑑𝑑 ×]𝛿𝛿𝛼𝛼 𝑑𝑑/𝐻𝐻 − 𝛿𝛿𝛽𝛽 𝑑𝑑 − 𝐴𝐴(𝑞𝑞 ̂𝑑𝑑/𝐻𝐻)�̂�𝑛 ∙ 𝛿𝛿�̇�𝜃 − 𝜂𝜂𝑑𝑑𝑣𝑣 

                δ𝛼𝛼 ̇𝑐𝑐/𝐻𝐻 = −[�⃗⃗�𝜔 ̂𝑐𝑐 ×]𝛿𝛿𝛼𝛼 𝑐𝑐/𝐻𝐻 − 𝛿𝛿𝛽𝛽 𝑐𝑐 − 𝐴𝐴(𝑞𝑞 ̂𝑐𝑐/𝐻𝐻)�̂�𝑛 ∙ 𝛿𝛿�̇�𝜃 − 𝜂𝜂𝑐𝑐𝑣𝑣                   (18) 
 
The error state vector constructed by both the relative orbit dynamics and the attitude equation of 

motion is defined as follows. 
 

          ∆𝑥𝑥 = *δ𝛼𝛼 𝑑𝑑
𝐻𝐻

𝑇𝑇 δ𝛼𝛼 𝑐𝑐
𝐻𝐻

𝑇𝑇 δ𝛽𝛽 𝑐𝑐𝑇𝑇 δ𝛽𝛽 𝑑𝑑𝑇𝑇 𝛿𝛿𝜌𝜌 𝑇𝑇 𝛿𝛿𝜌𝜌 ̇𝑇𝑇 𝛿𝛿𝑟𝑟𝑐𝑐 𝛿𝛿�̇�𝑟𝑐𝑐 𝛿𝛿𝜃𝜃 𝛿𝛿�̇�𝜃+
𝑇𝑇
              (19) 

 
Therefore, the overall error state equation can be summarized as the following Eq. (20). 
 

∆𝑥𝑥 ̇ = F∆𝑥𝑥 + 𝐺𝐺�⃗⃗�𝜔  
�⃗⃗�𝜔 = [𝜂𝜂𝑑𝑑𝑣𝑣

𝑇𝑇 , 𝜂𝜂𝑐𝑐𝑣𝑣
𝑇𝑇 , 𝜂𝜂𝑑𝑑𝑑𝑑

𝑇𝑇 , 𝜂𝜂𝑐𝑐𝑑𝑑
𝑇𝑇 , �⃗⃗�𝜔 𝜌𝜌] 

F = [𝐹𝐹1
𝑇𝑇 𝐹𝐹2

𝑇𝑇 𝐹𝐹3
𝑇𝑇]𝑇𝑇 

F1 = [−[�⃗⃗�𝜔 ̂𝑑𝑑 ×] 03×3 −𝐼𝐼3×3

03×3 −[�⃗⃗�𝜔 ̂𝑐𝑐 ×] 03×3
     

03×3 03×9 −𝐴𝐴(𝑞𝑞 ̂𝑑𝑑/𝐻𝐻)�̂�𝑛
−𝐼𝐼3×3 03×9 −𝐴𝐴(𝑞𝑞 ̂𝑐𝑐/𝐻𝐻)�̂�𝑛

] 

F2 = 06×22, F3 = [010×12 𝐹𝐹𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜] 
G = [𝐺𝐺1 𝐺𝐺2

𝐺𝐺3 𝐺𝐺4
]                                 (20) 

𝐺𝐺1 = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(−𝐼𝐼3×3, −𝐼𝐼3×3, 𝐼𝐼3×3, 𝐼𝐼3×3) 
𝐺𝐺2 = 012×3, 𝐺𝐺3 = 010×12 
𝐺𝐺4 = [03×3 𝐼𝐼3×3 03×4]𝑇𝑇 

Q =  𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝜎𝜎𝑑𝑑𝑣𝑣
2 𝐼𝐼3×3, 𝜎𝜎𝑐𝑐𝑣𝑣

2  𝐼𝐼3×3, 𝜎𝜎𝑑𝑑𝑑𝑑
2 𝐼𝐼3×3, 𝜎𝜎𝑐𝑐𝑑𝑑

2 𝐼𝐼3×3, 𝜎𝜎𝜌𝜌
2𝐼𝐼3×3) 

H(𝑋𝑋 ̂) = [[𝐴𝐴(𝑞𝑞 ̂𝑑𝑑/𝐻𝐻)𝑟𝑟 ̂1 ×] 𝜕𝜕�⃗�𝑏 ̂1
𝜕𝜕𝛿𝛿𝛼𝛼 ̂𝑐𝑐/𝐻𝐻

03×3 03×3
𝜕𝜕�⃗�𝑏 ̂1
𝜕𝜕𝜌𝜌 ̂

03×7

⋮ ⋮
] 

 
Eq. (20) represents the relative attitude of the primary and secondary spacecraft, chief and deputy, with 
respect to the rotational coordinate system (LVLH). The relative attitude between two spacecrafts can be 
obtained by quaternion calculation. Since no orbital control is applied in the PCO formation flying scenario, 
information on thrust control is not required. If nonlinear perturbation is added to the dynamics, the absolute 
orbital estimation of the main spacecraft becomes meaningless. As can be seen from the matrix H in Eq. (20), 
absolute orbital elements do not affect the measurement value and only have an effect on the propagated 
state of each spacecraft. Therefore, in the PCO formation flying scenario with nonlinear perturbations, the 
error state vector is modified as follows. 
 

               ∆𝑥𝑥 = *δ𝛼𝛼 𝑑𝑑
𝐻𝐻

𝑇𝑇 δ𝛼𝛼 𝑐𝑐
𝐻𝐻

𝑇𝑇 δ𝛽𝛽 𝑐𝑐𝑇𝑇    δ𝛽𝛽 𝑑𝑑𝑇𝑇 𝛿𝛿𝜌𝜌 𝑇𝑇 𝛿𝛿𝜌𝜌 ̇𝑇𝑇+
𝑇𝑇
                      (21) 

 
3. RESULTS 

 
3.1 Numerical Simulation 
 
3.1.1. Docking Scenario 
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Eq. (20) represents the relative attitude of the primary and secondary spacecraft, chief and deputy, with 
respect to the rotational coordinate system (LVLH). The relative attitude between two spacecrafts can be 
obtained by quaternion calculation. Since no orbital control is applied in the PCO formation flying scenario, 
information on thrust control is not required. If nonlinear perturbation is added to the dynamics, the absolute 
orbital estimation of the main spacecraft becomes meaningless. As can be seen from the matrix H in Eq. (20), 
absolute orbital elements do not affect the measurement value and only have an effect on the propagated 
state of each spacecraft. Therefore, in the PCO formation flying scenario with nonlinear perturbations, the 
error state vector is modified as follows. 
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𝑇𝑇
                      (21) 
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Therefore, the overall error state equation can be summarized as the following Eq. (20). 
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⋮ ⋮
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Eq. (20) represents the relative attitude of the primary and secondary spacecraft, chief and deputy, with 
respect to the rotational coordinate system (LVLH). The relative attitude between two spacecrafts can be 
obtained by quaternion calculation. Since no orbital control is applied in the PCO formation flying scenario, 
information on thrust control is not required. If nonlinear perturbation is added to the dynamics, the absolute 
orbital estimation of the main spacecraft becomes meaningless. As can be seen from the matrix H in Eq. (20), 
absolute orbital elements do not affect the measurement value and only have an effect on the propagated 
state of each spacecraft. Therefore, in the PCO formation flying scenario with nonlinear perturbations, the 
error state vector is modified as follows. 
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𝐻𝐻

𝑇𝑇 δ𝛼𝛼 𝑐𝑐
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𝑇𝑇 δ𝛽𝛽 𝑐𝑐𝑇𝑇    δ𝛽𝛽 𝑑𝑑𝑇𝑇 𝛿𝛿𝜌𝜌 𝑇𝑇 𝛿𝛿𝜌𝜌 ̇𝑇𝑇+
𝑇𝑇
                      (21) 

 
3. RESULTS 

 
3.1 Numerical Simulation 
 
3.1.1. Docking Scenario 
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respect to the rotational coordinate system (LVLH). The relative attitude between two spacecrafts can be 
obtained by quaternion calculation. Since no orbital control is applied in the PCO formation flying scenario, 
information on thrust control is not required. If nonlinear perturbation is added to the dynamics, the absolute 
orbital estimation of the main spacecraft becomes meaningless. As can be seen from the matrix H in Eq. (20), 
absolute orbital elements do not affect the measurement value and only have an effect on the propagated 
state of each spacecraft. Therefore, in the PCO formation flying scenario with nonlinear perturbations, the 
error state vector is modified as follows. 
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respect to the rotational coordinate system (LVLH). The relative attitude between two spacecrafts can be 
obtained by quaternion calculation. Since no orbital control is applied in the PCO formation flying scenario, 
information on thrust control is not required. If nonlinear perturbation is added to the dynamics, the absolute 
orbital estimation of the main spacecraft becomes meaningless. As can be seen from the matrix H in Eq. (20), 
absolute orbital elements do not affect the measurement value and only have an effect on the propagated 
state of each spacecraft. Therefore, in the PCO formation flying scenario with nonlinear perturbations, the 
error state vector is modified as follows. 
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Eq. (20) represents the relative attitude of the primary and secondary spacecraft, chief and deputy, with 
respect to the rotational coordinate system (LVLH). The relative attitude between two spacecrafts can be 
obtained by quaternion calculation. Since no orbital control is applied in the PCO formation flying scenario, 
information on thrust control is not required. If nonlinear perturbation is added to the dynamics, the absolute 
orbital estimation of the main spacecraft becomes meaningless. As can be seen from the matrix H in Eq. (20), 
absolute orbital elements do not affect the measurement value and only have an effect on the propagated 
state of each spacecraft. Therefore, in the PCO formation flying scenario with nonlinear perturbations, the 
error state vector is modified as follows. 
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Eq. (20) represents the relative attitude of the primary and secondary spacecraft, chief and deputy, with 
respect to the rotational coordinate system (LVLH). The relative attitude between two spacecrafts can be 
obtained by quaternion calculation. Since no orbital control is applied in the PCO formation flying scenario, 
information on thrust control is not required. If nonlinear perturbation is added to the dynamics, the absolute 
orbital estimation of the main spacecraft becomes meaningless. As can be seen from the matrix H in Eq. (20), 
absolute orbital elements do not affect the measurement value and only have an effect on the propagated 
state of each spacecraft. Therefore, in the PCO formation flying scenario with nonlinear perturbations, the 
error state vector is modified as follows. 
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Eq. (20) represents the relative attitude of the primary and secondary spacecraft, chief and deputy, with 
respect to the rotational coordinate system (LVLH). The relative attitude between two spacecrafts can be 
obtained by quaternion calculation. Since no orbital control is applied in the PCO formation flying scenario, 
information on thrust control is not required. If nonlinear perturbation is added to the dynamics, the absolute 
orbital estimation of the main spacecraft becomes meaningless. As can be seen from the matrix H in Eq. (20), 
absolute orbital elements do not affect the measurement value and only have an effect on the propagated 
state of each spacecraft. Therefore, in the PCO formation flying scenario with nonlinear perturbations, the 
error state vector is modified as follows. 
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03×3 −[�⃗⃗�𝜔 ̂𝑐𝑐 ×] 03×3
     

03×3 03×9 −𝐴𝐴(𝑞𝑞 ̂𝑑𝑑/𝐻𝐻)�̂�𝑛
−𝐼𝐼3×3 03×9 −𝐴𝐴(𝑞𝑞 ̂𝑐𝑐/𝐻𝐻)�̂�𝑛

] 

F2 = 06×22, F3 = [010×12 𝐹𝐹𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜] 
G = [𝐺𝐺1 𝐺𝐺2

𝐺𝐺3 𝐺𝐺4
]                                 (20) 

𝐺𝐺1 = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(−𝐼𝐼3×3, −𝐼𝐼3×3, 𝐼𝐼3×3, 𝐼𝐼3×3) 
𝐺𝐺2 = 012×3, 𝐺𝐺3 = 010×12 
𝐺𝐺4 = [03×3 𝐼𝐼3×3 03×4]𝑇𝑇 
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2 𝐼𝐼3×3, 𝜎𝜎𝜌𝜌
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H(𝑋𝑋 ̂) = [[𝐴𝐴(𝑞𝑞 ̂𝑑𝑑/𝐻𝐻)𝑟𝑟 ̂1 ×] 𝜕𝜕�⃗�𝑏 ̂1
𝜕𝜕𝛿𝛿𝛼𝛼 ̂𝑐𝑐/𝐻𝐻

03×3 03×3
𝜕𝜕�⃗�𝑏 ̂1
𝜕𝜕𝜌𝜌 ̂

03×7

⋮ ⋮
] 

 
Eq. (20) represents the relative attitude of the primary and secondary spacecraft, chief and deputy, with 
respect to the rotational coordinate system (LVLH). The relative attitude between two spacecrafts can be 
obtained by quaternion calculation. Since no orbital control is applied in the PCO formation flying scenario, 
information on thrust control is not required. If nonlinear perturbation is added to the dynamics, the absolute 
orbital estimation of the main spacecraft becomes meaningless. As can be seen from the matrix H in Eq. (20), 
absolute orbital elements do not affect the measurement value and only have an effect on the propagated 
state of each spacecraft. Therefore, in the PCO formation flying scenario with nonlinear perturbations, the 
error state vector is modified as follows. 
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𝐻𝐻

𝑇𝑇 δ𝛼𝛼 𝑐𝑐
𝐻𝐻

𝑇𝑇 δ𝛽𝛽 𝑐𝑐𝑇𝑇    δ𝛽𝛽 𝑑𝑑𝑇𝑇 𝛿𝛿𝜌𝜌 𝑇𝑇 𝛿𝛿𝜌𝜌 ̇𝑇𝑇+
𝑇𝑇
                      (21) 
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Eq. (20) represents the relative attitude of the primary and secondary spacecraft, chief and deputy, with 
respect to the rotational coordinate system (LVLH). The relative attitude between two spacecrafts can be 
obtained by quaternion calculation. Since no orbital control is applied in the PCO formation flying scenario, 
information on thrust control is not required. If nonlinear perturbation is added to the dynamics, the absolute 
orbital estimation of the main spacecraft becomes meaningless. As can be seen from the matrix H in Eq. (20), 
absolute orbital elements do not affect the measurement value and only have an effect on the propagated 
state of each spacecraft. Therefore, in the PCO formation flying scenario with nonlinear perturbations, the 
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Eq. (20) represents the relative attitude of the primary and secondary spacecraft, chief and deputy, with 
respect to the rotational coordinate system (LVLH). The relative attitude between two spacecrafts can be 
obtained by quaternion calculation. Since no orbital control is applied in the PCO formation flying scenario, 
information on thrust control is not required. If nonlinear perturbation is added to the dynamics, the absolute 
orbital estimation of the main spacecraft becomes meaningless. As can be seen from the matrix H in Eq. (20), 
absolute orbital elements do not affect the measurement value and only have an effect on the propagated 
state of each spacecraft. Therefore, in the PCO formation flying scenario with nonlinear perturbations, the 
error state vector is modified as follows. 
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𝑇𝑇
                      (21) 
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             δ�⃗⃗�𝜔 𝑑𝑑 = �⃗⃗�𝜔 𝑑𝑑 − �⃗⃗�𝜔 ̂𝑑𝑑 = �̃�𝜔 − 𝛽𝛽 𝑑𝑑 − 𝜂𝜂𝑣𝑣 − (�̃�𝜔 − 𝛽𝛽 ̂𝑑𝑑) = −(𝛿𝛿𝛽𝛽 𝑑𝑑 + 𝜂𝜂𝑑𝑑𝑣𝑣)               (17) 

δ�⃗⃗�𝜔 𝐻𝐻 = �⃗⃗�𝜔 𝐻𝐻 − �⃗⃗�𝜔 ̂𝐻𝐻 = �̂�𝑛 ∙ 𝛿𝛿�̇�𝜃 
�̂�𝑛 = [0 0 1]𝑇𝑇, 𝛿𝛿�̇�𝜃 = �̇�𝜃 − �̂̇�𝜃 

 
With the following procedures in (Kim et al. 2007), the state equations can be constructed as follows. 

 
δ𝛼𝛼 ̇𝑑𝑑/𝐻𝐻 = −[�⃗⃗�𝜔 ̂𝑑𝑑 ×]𝛿𝛿𝛼𝛼 𝑑𝑑/𝐻𝐻 − 𝛿𝛿𝛽𝛽 𝑑𝑑 − 𝐴𝐴(𝑞𝑞 ̂𝑑𝑑/𝐻𝐻)�̂�𝑛 ∙ 𝛿𝛿�̇�𝜃 − 𝜂𝜂𝑑𝑑𝑣𝑣 

                δ𝛼𝛼 ̇𝑐𝑐/𝐻𝐻 = −[�⃗⃗�𝜔 ̂𝑐𝑐 ×]𝛿𝛿𝛼𝛼 𝑐𝑐/𝐻𝐻 − 𝛿𝛿𝛽𝛽 𝑐𝑐 − 𝐴𝐴(𝑞𝑞 ̂𝑐𝑐/𝐻𝐻)�̂�𝑛 ∙ 𝛿𝛿�̇�𝜃 − 𝜂𝜂𝑐𝑐𝑣𝑣                   (18) 
 
The error state vector constructed by both the relative orbit dynamics and the attitude equation of 

motion is defined as follows. 
 

          ∆𝑥𝑥 = *δ𝛼𝛼 𝑑𝑑
𝐻𝐻

𝑇𝑇 δ𝛼𝛼 𝑐𝑐
𝐻𝐻

𝑇𝑇 δ𝛽𝛽 𝑐𝑐𝑇𝑇 δ𝛽𝛽 𝑑𝑑𝑇𝑇 𝛿𝛿𝜌𝜌 𝑇𝑇 𝛿𝛿𝜌𝜌 ̇𝑇𝑇 𝛿𝛿𝑟𝑟𝑐𝑐 𝛿𝛿�̇�𝑟𝑐𝑐 𝛿𝛿𝜃𝜃 𝛿𝛿�̇�𝜃+
𝑇𝑇
              (19) 

 
Therefore, the overall error state equation can be summarized as the following Eq. (20). 
 

∆𝑥𝑥 ̇ = F∆𝑥𝑥 + 𝐺𝐺�⃗⃗�𝜔  
�⃗⃗�𝜔 = [𝜂𝜂𝑑𝑑𝑣𝑣

𝑇𝑇 , 𝜂𝜂𝑐𝑐𝑣𝑣
𝑇𝑇 , 𝜂𝜂𝑑𝑑𝑑𝑑

𝑇𝑇 , 𝜂𝜂𝑐𝑐𝑑𝑑
𝑇𝑇 , �⃗⃗�𝜔 𝜌𝜌] 

F = [𝐹𝐹1
𝑇𝑇 𝐹𝐹2

𝑇𝑇 𝐹𝐹3
𝑇𝑇]𝑇𝑇 

F1 = [−[�⃗⃗�𝜔 ̂𝑑𝑑 ×] 03×3 −𝐼𝐼3×3

03×3 −[�⃗⃗�𝜔 ̂𝑐𝑐 ×] 03×3
     

03×3 03×9 −𝐴𝐴(𝑞𝑞 ̂𝑑𝑑/𝐻𝐻)�̂�𝑛
−𝐼𝐼3×3 03×9 −𝐴𝐴(𝑞𝑞 ̂𝑐𝑐/𝐻𝐻)�̂�𝑛

] 

F2 = 06×22, F3 = [010×12 𝐹𝐹𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜] 
G = [𝐺𝐺1 𝐺𝐺2

𝐺𝐺3 𝐺𝐺4
]                                 (20) 

𝐺𝐺1 = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(−𝐼𝐼3×3, −𝐼𝐼3×3, 𝐼𝐼3×3, 𝐼𝐼3×3) 
𝐺𝐺2 = 012×3, 𝐺𝐺3 = 010×12 
𝐺𝐺4 = [03×3 𝐼𝐼3×3 03×4]𝑇𝑇 

Q =  𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝜎𝜎𝑑𝑑𝑣𝑣
2 𝐼𝐼3×3, 𝜎𝜎𝑐𝑐𝑣𝑣

2  𝐼𝐼3×3, 𝜎𝜎𝑑𝑑𝑑𝑑
2 𝐼𝐼3×3, 𝜎𝜎𝑐𝑐𝑑𝑑

2 𝐼𝐼3×3, 𝜎𝜎𝜌𝜌
2𝐼𝐼3×3) 

H(𝑋𝑋 ̂) = [[𝐴𝐴(𝑞𝑞 ̂𝑑𝑑/𝐻𝐻)𝑟𝑟 ̂1 ×] 𝜕𝜕�⃗�𝑏 ̂1
𝜕𝜕𝛿𝛿𝛼𝛼 ̂𝑐𝑐/𝐻𝐻

03×3 03×3
𝜕𝜕�⃗�𝑏 ̂1
𝜕𝜕𝜌𝜌 ̂

03×7

⋮ ⋮
] 

 
Eq. (20) represents the relative attitude of the primary and secondary spacecraft, chief and deputy, with 
respect to the rotational coordinate system (LVLH). The relative attitude between two spacecrafts can be 
obtained by quaternion calculation. Since no orbital control is applied in the PCO formation flying scenario, 
information on thrust control is not required. If nonlinear perturbation is added to the dynamics, the absolute 
orbital estimation of the main spacecraft becomes meaningless. As can be seen from the matrix H in Eq. (20), 
absolute orbital elements do not affect the measurement value and only have an effect on the propagated 
state of each spacecraft. Therefore, in the PCO formation flying scenario with nonlinear perturbations, the 
error state vector is modified as follows. 
 

               ∆𝑥𝑥 = *δ𝛼𝛼 𝑑𝑑
𝐻𝐻

𝑇𝑇 δ𝛼𝛼 𝑐𝑐
𝐻𝐻

𝑇𝑇 δ𝛽𝛽 𝑐𝑐𝑇𝑇    δ𝛽𝛽 𝑑𝑑𝑇𝑇 𝛿𝛿𝜌𝜌 𝑇𝑇 𝛿𝛿𝜌𝜌 ̇𝑇𝑇+
𝑇𝑇
                      (21) 

 
3. RESULTS 

 
3.1 Numerical Simulation 
 
3.1.1. Docking Scenario 

 
(21)

4. RESULTS

4.1 Numerical Simulation

4.1.1 Docking Scenario

In this scenario, the target (chief) spacecraft with attached 

LEDs was orbiting a low earth orbit. The scenario assumed 

that a tracking (deputy) spacecraft, equipped with a camera, 

was about 6 m away from the chief and approaching to 

dock with the target. A classical PD controller was used 

in this simulation. The reference orbital model was based 

on absolute equations of motion in Eq. (5), including JGM 

20×20, 3rd body perturbation of the moon and the sun, 

atmospheric friction, and solar radiation pressure. The 

absolute attitude model in Eqs. (6) and (7) including control 

input error and gravity gradient torque were used in this 

scenario. The dynamic model in the filter used the absolute 

trajectory model in Eq. (5), and the absolute attitude model 

in Eqs. (6) and (7), as same as reference model but excluded 

error components.

The docking aimed at reaching the required state starting 

from the initial state. The relative distance between the 

camera and the LEDs center was 0.3 m at the required 

position, and attitudes of the tracking spacecraft and the 

target spacecraft were aligned. A 10 % control error for PD 

control was applied. The P and D gain of the attitude control 

were set to 0.1 and 0.04, respectively, and the P gain and the D 

gain of the trajectory control were set to 2 and 7, respectively. 

The measurement error was varied from 0.1 pixel to 5 pixels. 

The docking requirement (Wigbert 2008) determining 

the success of the docking mission was considered and 

simulation results were compared with these values. The 

initial values of relative pose between spacecraft and docking 

requirements are shown in Table 2. The initial state was set 

within the range in which the vision sensor can detect all 

the LEDs. The initial relative position, velocity, attitude, and 
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angular velocity errors were set to [1, 0.5, 0.5] m, [0.1, 0.1, 0.1] 

m, [1, 1, 1]°, and [1, 1, 1] °/s, respectively.

We found that estimation errors converged at around 200 

sec for all cases in the measurement error of 0.1 – 5 pixels for 

given initial conditions. The sum of the three sigma values 

of both the control and estimation error was considered as 

the total accuracy of the procedure. 

Table 3 illustrates the position, velocity estimation error, 

and control error in the case of a measurement error of 1 

pixel, and shows that requirements were satisfied. Three 

sigma of relative position estimation error was 0.0009 m 

and three sigma of control error was 0.0010 m. Thus, the 

total accuracy was about 0.0019 m, which satisfied the 

docking requirement (Fig. 7). Three sigma of the attitude 

estimation error was 0.1342°, and the three sigma of the 

attitude control error was 0.0872° (Fig. 8). Therefore, all 

required accuracies were satisfied. In Table 3, it can be seen 

that the measurement error increases with an increase in 

both the control and the estimation error. Moreover, if the 

measurement error exceeds 5 pixels, the attitude control 

Table 2. Initial state (above), docking requirement (below)

Initial relative position (LED frame) Initial relative attitude (Euler angle) Measurement noise
(5, 0.5, 0.5) m (5, 2, 5)° 0.1~4 pixel

Desired relative position
(LED frame)

Desired relative attitude
(Euler angle)

Control input noise

(0.3, 0.045, 0) m (0, 0, 0)° 10 % of control input
Position Attitude Velocity Angular rate

~1cm ~1° ~1 cm/s ~0.1°/s

Table 3. The performance of position and attitude according to the level of measurement error

Position (200~500 sec) Attitude (200~500 sec)
Measurement 

noise
3σ of steady state 

(m)
3σ of estimation 

error (m)
3σ of steady state 

(°)
3σ of estimation 

error (°)
0.1 0.0006 0.0002 0.312 0.275
1 0.0010 0.0009 0.0872 0.1342
2 0.0017 0.0022 0.2420 0.3404
4 0.0026 0.0036 0.3139 0.5619
5 0.0030 0.0043 0.3327 0.6764

Fig. 7. The error of position (above), velocity (below), control (left), and estimation (right) with 1 pixel 
measurement error.
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and estimation performance do not meet the requirement. 

However, the position accuracy still meets the docking 

requirement. Therefore, docking using the vision system 

should be carefully handled with respect to the attitude 

accuracy.

4.1.2 PCO Formation Flying Scenario

The PCO at low Earth altitude had a projection radius of 100 

m. Previous studies have used PSD with a standard deviation 

error of 0.0005° (Zhang et al. 2014). This corresponds to 

0.01 pixel on a sensor with 8 mm focus length. We set the 

measurement error as 1/3 pixel, which was experimentally 

confirmed with the CMOS vision sensor used for ASTERIX. 

The orbital model of the filter applied the relative orbital in 

Eq. (9). With initial values satisfying the condition of Eq. (22), 

the orbit was designed to perform relative orbital motion for a 

sufficiently long period without any orbit control. The relative 

pose was estimated through the extended Kalman filter in Eq. 

(20).

 

10 

 

 
In this scenario, the target (chief) spacecraft with attached LEDs was orbiting a low earth orbit. The 

scenario assumed that a tracking (deputy) spacecraft, equipped with a camera, was about 6 m away from the 
chief and approaching to dock with the target. A classical PD controller was used in this simulation. The 
reference orbital model was based on absolute equations of motion in Eq. (5), including JGM 20×20, 3rd 
body perturbation of the moon and the sun, atmospheric friction, and solar radiation pressure. The absolute 
attitude model in Eq. (6) and (7) including control input error and gravity gradient torque were used in this 
scenario. The dynamic model in the filter used the absolute trajectory model in Eq. (5), and the absolute 
attitude model in Eq. (6) and (7), as same as reference model but excluded error components. 

The docking aimed at reaching the required state starting from the initial state. The relative distance 
between the camera and the LEDs center was 0.3 m at the required position, and attitudes of the tracking 
spacecraft and the target spacecraft were aligned. A 10 % control error for PD control was applied. The P and 
D gain of the attitude control were set to 0.1 and 0.04, respectively, and the P gain and the D gain of the 
trajectory control were set to 2 and 7, respectively. The measurement error was varied from 0.1 pixel to 5 
pixels. The docking requirement (Wigbert 2008) determining the success of the docking mission was 
considered and simulation results were compared with these values. The initial values of relative pose 
between spacecraft and docking requirements are shown in Table 2. The initial state was set within the range 
in which the vision sensor can detect all the LEDs. The initial relative position, velocity, attitude, and angular 
velocity errors were set to [1, 0.5 0.5] m, [0.1, 0.1, 0.1] m, [1 1 1]°, and [1 1 1] °/s, respectively. 

We found that estimation errors converged at around 200 s for all cases in the measurement error of 0.1 
– 5 pixels for given initial conditions. The sum of the three sigma values of both the control and estimation 
error was considered as the total accuracy of the procedure.  

Table 3 illustrates the position, velocity estimation error, and control error in the case of a measurement 
error of 1 pixel, and shows that requirements were satisfied. Three sigma of relative position estimation error 
was 0.0009 m and three sigma of control error was 0.0010 m. Thus, the total accuracy was about 0.0019 m, 
which satisfied the docking requirement (Fig. 7). Three sigma of the attitude estimation error was 0.1342°, 
and the three sigma of the attitude control error was 0.0872° (Fig. 8). Therefore, all required accuracies were 
satisfied. In Table 3, it can be seen that the measurement error increases with an increase in both the control 
and the estimation error. Moreover, if the measurement error exceeds 5 pixels, the attitude control and 
estimation performance do not meet the requirement. However, the position accuracy still meets the docking 
requirement. Therefore, docking using the vision system should be carefully handled with respect to the 
attitude accuracy. 
 
3.1.2. PCO Formation Flying Scenario 

 
The PCO at low Earth altitude had a projection radius of 100 m. Previous studies have used PSD with a 

standard deviation error of 0.0005° (Zhang et al. 2014). This corresponds to 0.01 pixel on a sensor with 8 
mm focus length. We set the measurement error as 1/3 pixel, which was experimentally confirmed with the 
CMOS vision sensor used for ASTERIX. The orbital model of the filter applied the relative orbital in Eq. (9). 
With initial values satisfying the condition of Eq. (22), the orbit was designed to perform relative orbital 
motion for a sufficiently long period without any orbit control. The relative pose was estimated through the 
extended Kalman filter in Eq. (20). 

 
                  

�̇�𝑦(𝑡𝑡0)
𝑥𝑥(𝑡𝑡0) = ;𝑛𝑛(2:𝑒𝑒)

√(1:𝑒𝑒)(1;𝑒𝑒)3                                     (22) 

 
In order to detect LEDs even at longer distances, the space between each LED was adjusted to be 10 

times wider than in the docking scenario (Fig. 3). Thus, the lateral and vertical width of the LED structure 
were set to be 1.5 m and 0.8 m, respectively. The initial relative pose of the PCO scenario is shown in Table 
4. The bias error of the gyro sensor was set to be 1°/hr for each axis, and the initial error of the position and 
attitude was set to be 1 m and 1°. The initial covariance matrix consisted of a relative position 5𝐼𝐼3×3 𝑚𝑚2, a 
relative attitude of 𝐼𝐼3×3 𝑑𝑑𝑑𝑑𝑑𝑑2, a gyro bias of each satellite 4𝐼𝐼3×3 (𝑑𝑑𝑑𝑑𝑑𝑑/)2, and a diagonal matrix with relative 
velocity 0.02𝐼𝐼3×3 (𝑚𝑚/𝑠𝑠)2. For a given initial condition, attitude estimation errors of the two spacecrafts 

 
(22)

In order to detect LEDs even at longer distances, the 

space between each LED was adjusted to be 10 times wider 

than in the docking scenario (Fig. 3). Thus, the lateral and 

vertical width of the LED structure were set to be 1.5 m 

and 0.8 m, respectively. The initial relative pose of the PCO 

scenario is shown in Table 4. The bias error of the gyro 

sensor was set to be 1°/hr for each axis, and the initial error 

of the position and attitude was set to be 1 m and 1°. The 

initial covariance matrix consisted of a relative position 

5I
3×3

m2, a relative attitude of I
3×3

 (°)2, a gyro bias of each 

satellite 4I
3×3

 (˚/hr)2, and a diagonal matrix with relative 

velocity 0.02I
3×3

 (m/s)2. For a given initial condition, attitude 

estimation errors of the two spacecrafts converged in about 

50 minutes. The dotted line in Fig. 7 represents the 3 sigma 

of accuracy. The attitude estimation error of each satellite 

was less than 1°, and 3 sigma was also less than 1°. The 

estimated value of the bias of the gyro sensor converged 

efficiently to the true value 1°/hr at around 50 minutes. The 

relative attitude estimation error was less than 1°.

The estimation results by numerical simulations are 

shown in Table 5. The relative position was estimated with a 

precision of less than 1 m, and the velocity with a precision 

of less than 5 mm/s. Compared with the docking scenario, it 

Fig. 8. The error of attitude (above), angular velocity (below), control (left), and estimation (right) with 1 
pixel measurement error.

Table 4. Initial state of PCO scenario

Initial relative position (LVLH) (50, 19,553, 100) m
Initial relative velocity (LVLH) (0.01, -0.108, 0.02) m/s

Initial relative attitude (Euler angle) (-2.225, 63.418, -1.999)°
Initial relative angular velocity (Chief’s frame) (0, 0, 0)°/s
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was seen that the error increased by several times or several 

tens of times. The result reveals that estimation accuracy 

becomes lower as the relative distance between spacecraft 

increases.

4.1.3 The Performance Complement Using Laser Distance 

Meter

On the other hand, since the laser distance meter provides 

distance information in the direction of line of sight, it is 

suitable as a sensor for supplementing the vision sensor. The 

attitude estimation information required for the laser distance 

meter can be obtained through the vision system. Therefore, 

the PD controller uses the estimated attitude information of 

the vision system. The 3 sigma of the attitude control error 

is shown in Fig. 9. Considering the attitude control error of 

steady state and the relative distance, the alignment error of 

the laser was less than 1 m. Therefore, it is assumed that after 

the attitude control reaches the steady state, the laser distance 

measurement can be continuously received. The error of the 

equipment itself was assumed to be around 5 mm, which was 

obtained from the experiment (Fig. 6). We constructed the 

extended Kalman filter with the measurement model of laser 

distance meter in Eq. (4).

Figs. 10 and 11 depict results of the estimation algorithm 

supplemented by the laser distance meter. The graphs show 

that the relative position and velocity estimation accuracy 

improved. The accuracy of the position estimation shown 

in the LVLH coordinate system improved by about 10 times 

from 0.5 m to 0.05 m. The 3 sigma of the position error of the 

X, Y and Z axes in the LVLH coordinate system was 0.0246 

m, 0.0428 m and 0.0421 m respectively, and the 3 sigma of 

the velocity estimation error was 0.0006 m/s, 0.0008 m/s, 

and 0.0007 m/s in X, Y and Z axes, respectively. There was 

no significant change in the attitude estimation accuracy. 

From these results, we deduce that this method serve as 

an alternative when the estimation performance of the 

vision system is degraded due to the effect of nonlinear 

perturbations and sufficiently long relative distance.

4.2 Hardware Experiment

The reference value of the ASTERIX was generated by 

eight infrared cameras, with two cameras at each corner 

of the laboratory (Fig. 12). The spacecraft simulator was 

equipped with more than three infrared markers, so that we 

could establish the coordinate system of the simulator. The 

Table 5. The accuracy of attitude estimation (above), position and velocity estimation (below)

Chief(roll, pitch, yaw) (°) Deputy (°) Relative attitude (°)
3σ

/mean
0.3257 0.3143 0.3225 0.3404 0.3421 0.3425

0.2372
(mean)

0.2151
(mean)

0.1702
(mean)

Relative position(x, y, z) (m) Relative velocity(x, y, z) (m/s)
3σ 0.6199 0.5914 0.4964 0.0011 0.0013 0.0010

Fig. 9. Attitude control error of chief spacecraft including camera.

PD Attitude control error(roll, pitch, yaw) (°)
3σ 0.1230 0.0363 0.2247

Fig. 10. The accuracy of relative position estimation with laser distance 
meter.

Fig. 11. The accuracy of relative velocity estimation with laser distance 
meter. 
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error in the reference value was 0.3550 mm for a period of 

100 seconds. However, the simulator has to be immobilized 

to the blind spot in order to generate stable references. The 

attitude error due to the loss of one marker was about 2° (B 

circle in Fig. 15). The movement of ASTERIX equipped with 

the vision system was implemented by manpower, not gas 

thrusters. The state between two simulators was estimated 

in real time (5 – 7 Hz). As we could see in the docking 

scenario, the simulators gradually approached a phase in 

which attitudes were aligned.

The experimental results are shown in Figs. 13-16. The 

relative position and attitude with respect to relative distance 

are shown in Figs. 13 and 14. The X-axis of the graph represents 

the relative distance shown in the camera coordinate system. 

It can be seen that the docking proceeded without being 

completely aligned with respect to yaw axis (a-1, a-2 in Fig. 13). 

Figs. 15 and 16 show results of real-time state estimation. The 

Y-axis of the graph represents position errors of the x, y, and z 

axes or attitude errors of roll, pitch, and yaw, respectively. For 

all points, the ratio of satisfying the attitude requirement of 

the docking, which was less than 1°, is 95.96 %, and the ratio 

of satisfying the position requirement, which was less than 

1 cm, was 99.84 %. When the relative distance was less than 

Fig. 12. Reference using infrared cameras.

Fig. 13. True relative attitude confirmed by infrared cameras. Fig. 15. Relative attitude estimation error.

Fig. 14. True relative position confirmed by infrared cameras.



275 http://janss.kr 

Jeonghoon Hyun et al.   Spacecraft Pose Estimation Algorithm Evaluated Using Vision-based Sensor

0.4 m, 97.18 % and 100 % of the points satisfied requirements. 

The circle A in Fig. 15 corresponds a-1 and a-2 in Fig. 13. 

The attitude estimation error increased with increase in the 

relative attitude angle, especially when the distance between 

spacecraft was near in the LOS direction. This was because 

the LED projection image was distorted due to the relative 

attitude (Fig. 5). An example is shown in Fig. 17. The position 

error corresponding to the circle B of Fig. 15 is due to one 

of the markers not being detected for an instant. However, 

position errors were less than 1 cm, even if in the absence of 

one marker. In Fig. 16, the tendency of the position estimation 

error was slightly different for each axis. This was due to 

the incompleteness of the assembly, so that the estimation 

error was related to unadjusted assembly tolerance and 

measurement error, simultaneously. 

5. CONCLUSION

The effectiveness of the constructed algorithm was 

verified by software simulations assuming two scenarios. 

First, it is confirmed that the vision system composed of a 

vision-based estimation algorithm and a PD controller can 

be used for autonomous docking. When the measurement 

error of the vision sensor is less than 5 pixels, the desired 

relative position and attitude accuracy can be achieved. 

In the PCO formation flying scenario, the precision was 

lower than that of the docking task, but the accuracy was 

improved to the order of several tens of millimeters by the 

complementary algorithm using the laser sensor. This result 

confirmed that the relative position estimation performance 

of the vision system can be compensated by combining 

the vision system with the relative position sensor, which is 

sensitive to the relative distance direction. The algorithm 

demonstrated the possibility of expanding the distance 

range utilizing the vision system.

The near-field estimation performance of the constructed 

algorithm was verified by hardware experiments. First, it was 

confirmed that the accuracy required for the docking can be 

achieved by using the real vision system composed of real 

equipment. In addition, except for the assembly tolerance of 

the hardware, it was found that simulation results are similar 

to those of numerical simulations. Even in the presence of 

unmeasurable errors that may exist in the laboratory, the 

estimation system satisfied mission requirements. This 

implies that the vision system demonstrated its feasibility in 

the real-world estimation. 

This study confirmed the performance of both the software 

algorithm and the hardware system. Also, ways to supplement 

the algorithm were suggested and verified. In addition, 

by assessing the performance in actual experimental 

environment, the feasibility of the constructed algorithm 

was confirmed. In further research, the performance of 

the estimation algorithm in more varying scenarios can be 

analyzed and a system that reflects various error factors in the 

real world can be constructed.
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