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In a satellite gravimetry mission similar to GRACE, the precision of inter-satellite ranging is one of the key factors affecting 
the quality of gravity field recovery. In this paper, the impact of ranging precision on the accuracy of recovered geopotential 
coefficients is analyzed. Simulated precise orbit determination (POD) data and inter-satellite range data of formation-flying 
satellites containing white noise were generated, and geopotential coefficients were recovered from these simulated data 
sets using the crude acceleration approach. The accuracy of the recovered coefficients was quantitatively compared between 
data sets encompassing different ranging precisions. From this analysis, a rough prediction of the accuracy of geopotential 
coefficients could be obtained from the hypothetical mission. For a given POD precision, a ranging measurement precision 
that matches the POD precision was determined. Since the purpose of adopting inter-satellite ranging in a gravimetry 
mission is to overcome the imprecision of determining orbits, ranging measurements should be more precise than POD. For 
that reason, it can be concluded that this critical ranging precision matching the POD precision can serve as the minimum 
precision requirement for an on-board ranging device. Although the result obtained herein is about a very particular case, this 
methodology can also be applied in cases where different parameters are used.
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1. INTRODUCTION

Mapping the gravitational field of the Earth precisely is 

essential in many subfields of geoscience such as hydrology. 

For example, a map of water storage or glacier mass can be 

constructed from the knowledge of the precise temporal 

gravity field at that time. Thus, by tracking changes in the 

time-variable gravity field, we can identify changes in how 

mass is distributed on the Earth.

Satellite gravimetry, in which the Earth’s gravity field is 

determined from tracking satellites’ orbits, is a preferred 

method for gravity field recovery. Commonly used geopotential 

models such as EGM96 and JGM-3 employed tracking data of 

multiple satellites. There was a significant advancement in the 

resolution and precision of satellite gravimetry with the advent 

of missions designed exclusively for gravimetry, such as GOCE 

(Floberghagen et al. 2011) and GRACE (Tapley et al.  2004). 

GRACE sought to make an improvement by measuring time-

varying range values between two identical satellites that orbit 

the same low-Earth orbit with a separation distance of about 

200 km. The uneven mass distribution of the Earth causes the 

inter-satellite range to fluctuate as the twins fly over different 

parts of the Earth, and conversely the Earth’s gravity signal 

can be extracted from these time-varying inter-satellite range 

values, or their time derivatives (i.e., range rate and range 

acceleration). These range-related values, measured by K-band 

ranging, could be determined considerably more precisely 

than their orbits, and their high precision is the primary reason 

for the improvement in the quality of geopotential recovery. A 

number of geopotential models generated only from GRACE 

data, including GGM02S (Tapley et al. 2005) and EIGEN-

GRACE02S (Reigber et al. 2005), have already been presented 

to the public since the public release of GRACE data. Most of 

these geopotential models mainly made use of GRACE range 

rate data in the functional model. The huge success of GRACE 

led to GRAIL (Hoffman 2009), a lunar gravimetry mission that 
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was successfully accomplished with the same twin-satellite 

approach, and GRACE-FO (Flechtner et al. 2012), a successor 

mission to GRACE.

Autonomous Spacecraft Test Environment for Rendezvous 

In proximity (ASTERIX), composed of two spacecraft formation 

flying simulators and a testbed for the simulators, has been 

developed by Astrodynamics and Control Laboratory of 

Yonsei University (Eun et al. 2018). A femtosecond laser device 

that can be installed on the simulators to measure the range 

between the simulators is also being developed. Although laser 

ranging has been used extensively for satellite laser ranging 

(SLR) (Jo et al. 2011; Lim et al. 2011; Choi et al. 2014; Kim et al. 

2015; Oh et al. 2017), the technique can also be employed for 

measuring an inter-satellite distance (Jung et al. 2012; Lee et al. 

2018). In this study, it was assumed that the satellite navigation 

algorithms were properly performed to figure out satellite’s 

position and velocity vectors (Oh et al. 2016; Shin et al. 2016;  

Kim et al. 2017; Lee et al. 2017a, b). One possible scientific 

mission that could be achieved with such configuration is a 

satellite gravimetry mission akin to GRACE with formation 

flying. Although there are a lot of factors that could potentially 

affect the accuracy of geopotential models produced from this 

hypothetical mission’s data, a crude prediction can be made 

with the knowledge of two main factors: the laser ranging 

measurement precision and precise orbit determination (POD) 

precision.

Various methods to recover the gravitational field of the 

Earth from low-low satellite-to-satellite tracking data have been 

proposed and developed. These approaches can be classified 

into three major categories, and numerous variations exist in 

each category. The first category is the variational equations 

approach. The short-arc approach can also be considered a 

variation of this approach. Although these approaches demand 

high computational costs as they require a large number of 

orbit integrations, several high-quality geopotential models 

from GRACE measurements have been generated using 

these two approaches, including GGM05S (Ries et al. 2016) 

and ITSG-Grace2016 (Mayer-Gürr et al. 2016). The second 

category, the energy balance approach, is based on the law of 

conservation of energy. Han (2004) and Shang et al. (2015) were 

able to determine the gravity field using this approach. The 

third category is the acceleration approach, which is based on 

Newton’s second law of motion. One of its theoretical advantages 

is efficient computation owing to the linearity of its functional 

model. In practice, however, there are several drawbacks to this 

approach that make the method unfavorable for actual gravity 

recovery from real-life mission data. For example, some of the 

quantities required to utilize the method can be measured only 

with low precision or are not available at all for GRACE (Weigelt 

2017). In spite of these disadvantages, we used the crude range 

acceleration approach suggested by Thomas (1999) in this 

paper. This approach is the simplest form among the variations 

within the acceleration approach. As stated, this approach is not 

to be used to compute precise geopotential coefficients from 

actual satellite data. Nevertheless, because it is not our intention 

to recover highly accurate geopotential coefficients based on 

actual satellite data, but to see the impact of ranging precision 

on coefficients, this crude approach sufficed for our purpose.

From this study, it is possible to make a rough estimate on 

the accuracy of geopotential models that can be generated 

with the data of this hypothetical mission. Additionally, we can 

estimate the minimum measurement precision that its on-

board ranging device must satisfy for the range measurements 

to be meaningful. The accuracy of geopotential models derived 

from this approach relies heavily on both the POD precision 

and ranging precision, and therefore we can find the critical 

point at which the two precisions have the same order of 

influence on the accuracy of coefficients. We believe this critical 

ranging precision can be thought of as the minimum precision 

requirement. Detailed reasoning for this statement will be given 

in Sections 2 and 4.

In this paper, we will cover the whole process of the simu-

lation, from generating simulated data obtainable from the 

hypothetical ranging device and POD to extracting gravity 

fields from the simulated data, and then we will determine 

the minimum precision requirement for the ranging system. 

In Section 2, the theory of the crude acceleration approach is 

explained in detail. In Section 3, the process of generating data 

to be used in the simulation, including satellite ephemerides 

and inter-satellite ranges, is illustrated. A filter to compute 

range accelerations from the range information is also 

discussed in the same section. In the last two sections, we 

perform geopotential recovery using the simulated data and 

discuss the results.

2. METHODS

Among numerous methods that have been developed to 

recover gravity field information from low-low satellite-to-

satellite tracking and inter-satellite range data, we employed 

a simple and crude acceleration approach by Thomas (1999). 

One feature of this method is that it is heavily dependent 

on the velocity vector difference between the satellites in 

formation flying. The fact that this vector can be determined 

only by POD is what makes this approach less appropriate 

for real-life application compared to other approaches. In 

general, it is more desirable to use methods that rely more 

on precise ranging data than on less precise POD data. If we 

think the other way around, however, this method can be 
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used to determine the minimum precision that a ranging 

device must satisfy: if the ranging device is imprecise to the 

point that the accuracy of geopotential models is limited by 

the imprecise range information even for this relatively highly 

POD-dependent approach, it would be useless to adopt other 

frequently used recovery approaches that rely more heavily 

on the range information. With that in mind, for a given POD 

precision, we can identify the lowest ranging precision where 

the accuracy of geopotential models is limited by the ranging 

precision rather than the POD precision, and we will call 

this the critical ranging precision. Installing a ranging device 

with a precision lower than the critical precision will result 

in gravitational field data highly hampered by its imprecise 

range information, which is not desirable. On the other hand, 

if we place a device with a precision higher than the critical 

precision, a more accurate recovery can be made by adopting 

other delicate recovery methods that are less dependent 

on the velocity vector difference or on other information 

obtainable from POD. For this reason, in a sense we can 

consider this critical precision as the minimum requirement 

for the ranging system.

2.1 The Crude Acceleration Approach 

The crude acceleration approach (Thomas 1999) begins 

with Newton’s second law of motion. If we assume that the 

only force acting on the twin satellites is the Earth’s gravity, 

the acceleration of each satellite can be computed as a 

gradient of the Earth’s gravitational potential, as in Eq. (1).
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dependent approach, it would be useless to adopt other frequently used recovery approaches that rely more 
heavily on the range information. With that in mind, for a given POD precision, we can identify the lowest 
ranging precision where the accuracy of geopotential models is limited by the ranging precision rather than 
the POD precision, and we will call this the critical ranging precision. Installing a ranging device with a 
precision lower than the critical precision will result in gravitational field data highly hampered by its 
imprecise range information, which is not desirable. On the other hand, if we place a device with a precision 
higher than the critical precision, a more accurate recovery can be made by adopting other delicate recovery 
methods that are less dependent on the velocity vector difference or on other information obtainable from 
POD. For this reason, in a sense we can consider this critical precision as the minimum requirement for the 
ranging system. 
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given by Eq. (4). For simplicity, we will often drop the ‘inter-satellite’ from now on. In the equation, 
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of Eq. (5), R̈·R̂, can easily be computed by Eq. (7) if we know 

both satellites’ positions and velocity vectors as well as range 

accelerations, which contain the geopotential coefficients. 

We would like to note that in Eq. (7), R̈ is influenced by the 

ranging precision, and Ṙ⊥ by the POD precision. This is the 

reason this approach is heavily dependent on both precisions.
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Our objective was to determine the geopotential coefficients      and      from time-varying range 
accelerations  ̈. To do so, we exploited the fact that the first term on the right side of Eq. (5),  ̈   ̂, can 
easily be computed by Eq. (7) if we know both satellites’ positions and velocity vectors as well as range 
accelerations, which contain the geopotential coefficients. We would like to note that in Eq. (7),  ̈ is 
influenced by the ranging precision, and  ̇  by the POD precision. This is the reason this approach is 
heavily dependent on both precisions. 
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It can be shown that                    and  ̂ can be computed if we can determine both satellites’ 
positions. One thing to be noted here is that gradients computed in spherical coordinates result in vectors in 
position-specific coordinates; therefore, we must rotate them appropriately to express them in the same frame 
before the subtractions in Eq. (9) can be done. Furthermore, as we need to compute dot products of 
                  , and  ̂, all these vectors must be expressed in the same frame, such as the Earth-centered-
Earth-fixed (ECEF) frame. 

Going back to Eq. (7), we have already seen that  ̈   ̂ can be computed easily. Accordingly, all terms 
on both sides of Eq. (8) are known with the exception of the geopotential coefficients, which can now be 
determined by the ordinary least squares method. We can write Eq. (8) for time 1 to   in matrix form  
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accelerations, which contain the geopotential coefficients. We would like to note that in Eq. (7),  ̈ is 
influenced by the ranging precision, and  ̇  by the POD precision. This is the reason this approach is 
heavily dependent on both precisions. 
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positions. One thing to be noted here is that gradients computed in spherical coordinates result in vectors in 
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before the subtractions in Eq. (9) can be done. Furthermore, as we need to compute dot products of 
                  , and  ̂, all these vectors must be expressed in the same frame, such as the Earth-centered-
Earth-fixed (ECEF) frame. 
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It can be shown that                    and  ̂ can be computed if we can determine both satellites’ 
positions. One thing to be noted here is that gradients computed in spherical coordinates result in vectors in 
position-specific coordinates; therefore, we must rotate them appropriately to express them in the same frame 
before the subtractions in Eq. (9) can be done. Furthermore, as we need to compute dot products of 
                  , and  ̂, all these vectors must be expressed in the same frame, such as the Earth-centered-
Earth-fixed (ECEF) frame. 

Going back to Eq. (7), we have already seen that  ̈   ̂ can be computed easily. Accordingly, all terms 
on both sides of Eq. (8) are known with the exception of the geopotential coefficients, which can now be 
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It can be shown that                    and  ̂ can be computed if we can determine both satellites’ 
positions. One thing to be noted here is that gradients computed in spherical coordinates result in vectors in 
position-specific coordinates; therefore, we must rotate them appropriately to express them in the same frame 
before the subtractions in Eq. (9) can be done. Furthermore, as we need to compute dot products of 
                  , and  ̂, all these vectors must be expressed in the same frame, such as the Earth-centered-
Earth-fixed (ECEF) frame. 

Going back to Eq. (7), we have already seen that  ̈   ̂ can be computed easily. Accordingly, all terms 
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accelerations  ̈. To do so, we exploited the fact that the first term on the right side of Eq. (5),  ̈   ̂, can 
easily be computed by Eq. (7) if we know both satellites’ positions and velocity vectors as well as range 
accelerations, which contain the geopotential coefficients. We would like to note that in Eq. (7),  ̈ is 
influenced by the ranging precision, and  ̇  by the POD precision. This is the reason this approach is 
heavily dependent on both precisions. 
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It can be shown that                    and  ̂ can be computed if we can determine both satellites’ 
positions. One thing to be noted here is that gradients computed in spherical coordinates result in vectors in 
position-specific coordinates; therefore, we must rotate them appropriately to express them in the same frame 
before the subtractions in Eq. (9) can be done. Furthermore, as we need to compute dot products of 
                  , and  ̂, all these vectors must be expressed in the same frame, such as the Earth-centered-
Earth-fixed (ECEF) frame. 

Going back to Eq. (7), we have already seen that  ̈   ̂ can be computed easily. Accordingly, all terms 
on both sides of Eq. (8) are known with the exception of the geopotential coefficients, which can now be 
determined by the ordinary least squares method. We can write Eq. (8) for time 1 to   in matrix form  
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It can be shown that                    and  ̂ can be computed if we can determine both satellites’ 
positions. One thing to be noted here is that gradients computed in spherical coordinates result in vectors in 
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  and   should be appropriately modified if we know the error model of range measurement, and then 
the error model parameters can also be estimated. For example, in Eq. (13) the last column of  , composed 
of 1’s, is added so that we can estimate the constant bias   in range data, although this is not an essential 
step for our study since we did not add a constant bias while making noisy range data. 

As already stated, the values of  ̈   ̂ and       ̂ can be calculated at each time if we know the 
satellites’ positions and velocity vectors at each time, so   is known. As         ̂ and         ̂ can also 
be computed at each time if we know the satellites’ position vectors at each time,   is also known. The term 
 , which consists of the normalized geopotential coefficients up to degree  , is the only unknown. Therefore, 
we can estimate the coefficients   by the ordinary least squares, as in Eq. (15). The hat implies that it is an 
estimated value. 
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3. SIMULATION DATA 
3.1 True Data and Noisy Data Generation 

The General Mission Analysis Tool (GMAT) (Hughes 2016), open-source software developed by 
NASA, was used to generate simulation data. The satellites were deemed to be on coplanar, nearly polar, and 
nearly circular orbits, and their orbits were propagated for durations of about 15 days (1,296,120 sec to be 
precise). The orbital parameters of the twin satellites at epoch are listed in Table 1. The epoch time was 
chosen arbitrarily, but the position and velocity vectors at epoch are the actual values of the GRACE twin 
satellites at the time. At epoch, the initial distance between them is about 175 km. For propagation, it was 
assumed that the only force acting on the satellites was the Earth’s gravity. The EGM96 gravity model 
(Lemoine et al. 1998) truncated at degree 180 was used. In reality, other perturbations such as air drag and 
solar radiation pressure exist. Therefore, such perturbations should be directly measured or assumed by 
appropriate modeling, and then be taken into account during the recovery process. For instance, GRACE 
satellites have accelerometers that can measure all kinds of non-gravitational accelerations (Flury et al. 2008). 
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the error model of range measurement, and then the error 

model parameters can also be estimated. For example, in 

Eq. (13) the last column of A, composed of 1’s, is added 

so that we can estimate the constant bias k in range data, 

although this is not an essential step for our study since we 

did not add a constant bias while making noisy range data.

As already stated, the values of R̈·R̂  and A
0,0

·R̂  can be 

calculated at each time if we know the satellites’ positions 

and velocity vectors at each time, so y is known. As A
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and A
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·R̂ can also be computed at each time if we know 

the satellites’ position vectors at each time, A is also known. 

The term p, which consists of the normalized geopotential 

coefficients up to degree l, is the only unknown. Therefore, we 

can estimate the coefficients p by the ordinary least squares, 

as in Eq. (15). The hat implies that it is an estimated value. 
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3. SIMULATION DATA

3.1 True Data and Noisy Data Generation 

The General Mission Analysis Tool (GMAT) (Hughes 

2016), open-source software developed by NASA, was used 

to generate simulation data. The satellites were deemed to 

be on coplanar, nearly polar, and nearly circular orbits, and 

their orbits were propagated for durations of about 15 days 

(1,296,120 sec to be precise). The orbital parameters of the 

twin satellites at epoch are listed in Table 1. The epoch time 

was chosen arbitrarily, but the position and velocity vectors 

at epoch are the actual values of the GRACE twin satellites 

at the time. At epoch, the initial distance between them is 

about 175 km. For propagation, it was assumed that the 

only force acting on the satellites was the Earth’s gravity. 

The EGM96 gravity model (Lemoine et al. 1998) truncated 

at degree 180 was used. In reality, other perturbations such 

as air drag and solar radiation pressure exist. Therefore, 

such perturbations should be directly measured or assumed 

by appropriate modeling, and then be taken into account 

during the recovery process. For instance, GRACE satellites 

Table 1. Orbital parameters of the satellites at epoch (February 21, 
2011 23:58:45:000 UTC)

Parameters Leading Satellite Trailing Satellite
Position vector (km) 

(Earth-centered 
J2000 equatorial frame)
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satellites at the time. At epoch, the initial distance between them is about 175 km. For propagation, it was 
assumed that the only force acting on the satellites was the Earth’s gravity. The EGM96 gravity model 
(Lemoine et al. 1998) truncated at degree 180 was used. In reality, other perturbations such as air drag and 
solar radiation pressure exist. Therefore, such perturbations should be directly measured or assumed by 
appropriate modeling, and then be taken into account during the recovery process. For instance, GRACE 
satellites have accelerometers that can measure all kinds of non-gravitational accelerations (Flury et al. 2008). 

 
Table 1. Orbital parameters of the satellites at epoch (February 21, 2011 23:58:45:000 UTC) 

Parameters Leading Satellite Trailing Satellite 

Position vector (km) 

(Earth-centered  

J2000 equatorial frame) 

[
             
            
             

] [
             
            
             

] 

Velocity vector (km/s) 

(Earth-centered  

J2000 equatorial frame) 

[
        
         
         

] [
        
         
         

] 

Semi-major axis (km) 6,839.899426 6,839.443634 

Eccentricity 0.000684 0.000662 

Inclination (deg) 88.946605 88.946676 

Semi-major axis (km) 6,839.899426 6,839.443634
Eccentricity 0.000684 0.000662

Inclination (deg) 88.946605 88.946676
Longitude of ascending node 

(deg)
280.532800 280.554185

Argument of periapsis (deg) 196.119654 204.303839
True anomaly (deg) 13.172055 6.513492
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have accelerometers that can measure all kinds of non-

gravitational accelerations (Flury et al. 2008).

The output of the simulation, composed of the positions 

and velocities (in the Earth-centered J2000 equatorial frame) 

of both satellites at an interval of 0.01 sec, can be thought of 

as the ‘true’ orbits they are on. Also computable from this 

output are the ‘true’ ranges for the same time interval. Then 

we contaminated the true data to generate noisy data, which 

can be considered a proxy of the imprecise data we would 

have from POD and the on-board ranging system in a real-

life mission. When GPS data is used in the POD process, 

it is natural that relative position and velocity between 

the satellites can be determined more precisely than with 

absolute values. With that in mind, the position and velocity 

values were contaminated with an appropriate amount of 

Gaussian noise. The true range values were also contaminated 

with Gaussian noise. The Gaussian noise of the position and 

velocity values corresponds to the precision of POD, and that 

of the range values to the precision of the laser ranging system. 

The Gaussian noise sigmas used for our simulation are given 

in Table 2. For each range noise sigma, we made 10 sets of 

random simulation data, so in total, 40 data sets were made.

3.2 Filtering 

The measurements we receive from the laser ranging 

system are inter-satellite ranges. If we are to use the crude 

acceleration approach, however, we need to know scalar 

range accelerations, denoted as r̈ in Eq. (7). To derive range 

acceleration values from range values, we used the CRN-class 

digital filter, which was also developed by Thomas (1999) and 

is currently used in processing GRACE mission inter-satellite 

range data (Wu 2006). By applying the filter to high-rate range 

data, we can obtain filtered high-rate range, range rate, and 

range acceleration data. There are several filter parameters, 

and we selected them so that our filtered result shares the 

same fundamental properties (e.g., the low-pass bandwidth 

and fit interval time) with GRACE Level 1B data. The filter 

parameters we used and the original parameters used to 

produce GRACE Level 1B data, are given in Table 3. The 

differences in the parameters are mainly due to their different 

high-rate raw data sampling frequencies: we assumed our 

laser ranging system measured ranges at 100 Hz, while the 

GRACE K-band ranging system operated at 10 Hz. More 

information about the filter and its parameters can be found 

in Thomas (1999) and Wu et al. (2006). Following the filtering 

process, low-rate (0.2 Hz) data was made by collecting the 

(filtered) high-rate values at intervals of 5 sec. Fig. 1 shows 

the low-rate range, range rate, and range acceleration values 

obtained by applying filters to noiseless high-rate range data.

A flowchart illustrating the process of making simulation 

data is shown in Fig. 2. First, the ‘true’ high-rate (100 Hz) 

position and velocity vectors (in the inertial J2000 frame) 

of each satellite and the ‘true’ high-rate range values were 

obtained by propagating their orbits with the help of GMAT. 

Table 3. Parameters for the CRN-class digital filter used in GRACE 
data processing and our simulation

Filter Parameters GRACE Simulation
Raw data rate (samples/sec) fs 10 100

Self convolution number Nc 7 7
Fit interval (sec) Tf 70.7 70.71

Target low-pass bandwidth (Hz) B 0.1 0.1
Dominant (J2) signal frequency (Hz) f0 0.37e-3 0.37e-3

The number of frequency bins 
in the passband

NB 7 7

The number of raw data points 
 in the fit interval

Nf 707 7,071

Table 2. Gaussian noise sigmas used to simulate the noisy data

Type Value
3D absolute position (km) 1e-4
3D relative position (km) 2e-5

3D absolute velocity (km/s) 5e-7
3D relative velocity (km/s) 1e-7

Inter-satellite range (km)
1e-5, 1e-6,  
1e-7, 1e-8

Fig. 1. Low-rate inter-satellite range (top), range rate (middle), and 
range acceleration (bottom) as a function of hours since epoch, obtained 
from true high-rate range values.
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White noise was added to the true data to simulate noisy 

data (see Section 3.1). Then, the noisy positions and velocity 

vectors were rotated from the inertial frame to the ECEF frame 

in order that they could be used in the crude acceleration 

approach. Also, the noisy range data was filtered by the CRN-

class digital filter to produce range acceleration data (see 

Section 3.2). Low-rate noisy data (0.2 Hz) was generated from 

the high-rate noisy data, and then geopotential coefficients 

were recovered from this low-rate noisy data.

4. RESULTS

For each of the 40 noisy data sets, we recovered geopotential 

coefficients using the crude acceleration approach. It could be 

expected that the obtained coefficients would become more 

accurate as the precision of the ranging system improved, but 

there is a critical point at which a better ranging precision does 

not produce better coefficients because of the imprecision 

of POD. Below that ranging precision, the accuracy of 

geopotential coefficients is limited by imprecise ranging; 

above that precision, the accuracy is limited by imprecise 

POD. In other words, the accuracy of the coefficients can be 

limited by either of the precisions depending on their values. 

We can think of that critical ranging precision as the minimum 

requirement of the ranging device. A ranging precision lower 

than this requirement would make the whole idea of using 

inter-satellite ranges pointless, but we could make use of more 

precise range data if we adopted other advanced recovery 

approaches.

Since the number of geopotential coefficients up to degree 

and order 100 equals 10,197, it is impractical to inspect their 

accuracies one by one. Instead, we used three different ways 

to quantify or visualize the differences between the ‘true’ 

gravitational coefficients and the obtained ones. Fig. 3 shows 

the root mean square (RMS)  coefficient differences per 

degree. The RMS coefficient difference for degree j, where 

j ranges from 2 to 100, can be computed by Eq. (16). In the 

equation, hatted quantities refer to the recovered (estimated) 

coefficients, and barred quantities to the true coefficients.
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Fig. 2. Flowchart for the simulation process. 
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Then, ten lists of RMS values obtained from ten different 

data sets that had the same ranging precision were averaged. 

In Fig. 3, light-colored lines represent each list of RMS values 

from a single data set, and bright-colored lines represent the 

averaged RMS values. Except for the bright red line, all three 

other bright lines are indistinguishable from one another. 

This implies that more precise ranging does not yield more 

accurate coefficients when the one-sigma ranging precision is 

below a few millimeters.

The colors in Fig. 4 show the RMS coefficient differences 

per each coefficient. Ten coefficient differences for a single 

coefficient, each obtained from ten data sets with the same 

Fig. 2. Flowchart for the simulation process.

Fig. 3. Averaged RMS coefficient differences per degree. Light-colored 
lines are drawn for each data set. Bright-colored lines are drawn by 
averaging the ten same light-colored lines. Smaller values imply more 
accurate coefficients. The RMS coefficients per degree of EGM96 are 
plotted as a black dotted line for comparison. Note that all values are 
unitless.
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ranging precision, were root-mean-squared. As we have 

seen in Fig. 3, the coefficients’ accuracy starts deteriorating 

when the ranging precision sigma becomes bigger than a 

few millimeters. One feature that was not found in Fig. 3,  

however, is that as the one-sigma ranging precision is 

improved from 1 millimeter (Fig. 4(b)) to 100 micrometers 

(Fig. 4(c)), there is a slight but definite improvement in 

coefficients of higher degree and lower order. The reason 

this improvement was not detectable in Fig. 3 is that the 

coefficients of higher degree and lower order are closer to 

their true values when compared with the coefficients of 

the same degree but higher order. Thus, the improvement 

in those coefficients only had a minute impact on the RMS 

differences per degree. Still, as in Fig. 3, not much difference 

can be seen between the 100 micrometer case (Fig. 4(c)) 

and the 10 micrometer case (Fig. 4(d)).

Finally, we can visualize the results in the form of geoid 

height differences. Geoid heights are slightly different 

depending on the coefficients used to compute them, and 

if the differences between the used coefficients and the true 

coefficients are small, their geoid height differences would 

also be small. Geoid height differences were computed with 

Eq. (17) (Heiskanen & Moritz  1967). In the equation, r(ϕ) 

and γ
0
(ϕ) (respectively) refer to the local ellipsoidal height 

and local normal gravity at geocentric latitude ϕ, computed 

with the constants from WGS84. Note that the maximum 

degree and order used to compute geoid height differences 

were truncated at 80, not 100.
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For each data set, using the corresponding recovered coefficients, geoid height differences were 
computed at 64,080 points over the globe: from 0 to 360 degrees with 1 degree intervals in longitude, and -
89 degrees to 89 degrees with 1 degree intervals in latitude. These 64,080 geoid height differences of that 
specific data set were root-mean-squared, so that we can easily compare the RMS values of different data 
sets. The RMS geoid height differences for all data sets are listed in Table 4. In Table 4, the RMS values for 
ten sets sharing the same ranging precision are listed in the same row, and then the average RMS value for 
that ranging precision is listed in the rightmost column. Fig. 5 shows on a world map the geoid height 
differences, using the worst data set (i.e., the data set with the largest RMS geoid height difference) among 
each range noise sigma. In Fig. 5, regions with higher geoid heights compared to the ‘true’ geoid height are 
shown in red, and regions with lower geoid heights are in blue. If the geopotential recovery process and data 
were perfectly ideal, every part of the Earth must have the same geoid height as the true geoid height, 
making the map green everywhere. From Table 4 and Fig. 5, we can easily conclude that the geopotential 
coefficients are undeniably poor in accuracy when the range noise sigma is 10 millimeters (Fig. 5 (a)), 
compared to the other three cases with higher precision (Fig. 5 (b)-(d)). This outcome is consistent with the 
conclusions made from Figs. 3 and 4. In Table 4, a slight difference in the averaged RMS values can be 
found between the 1 millimeter case and the other two cases with higher precision. We think that this slight 
difference is concordant with the slight but definite improvement in high-degree and low-order coefficients 
that was discussed while we were interpreting Fig. 4. 
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For each data set, using the corresponding recovered 

coefficients, geoid height differences were computed at 

64,080 points over the globe: from 0 to 360 degrees with 1 

degree intervals in longitude, and -89 degrees to 89 degrees 

with 1 degree intervals in latitude. These 64,080 geoid height 

differences of that specific data set were root-mean-squared, 

so that we can easily compare the RMS values of different 

data sets. The RMS geoid height differences for all data sets 

are listed in Table 4. In Table 4, the RMS values for ten sets 

sharing the same ranging precision are listed in the same row, 

and then the average RMS value for that ranging precision is 

listed in the rightmost column. Fig. 5 shows on a world map 

the geoid height differences, using the worst data set (i.e., the 

data set with the largest RMS geoid height difference) among 

each range noise sigma. In Fig. 5, regions with higher geoid 

heights compared to the ‘true’ geoid height are shown in 

Fig. 4. RMS coefficient differences per each coefficient for different one-sigma ranging precisions: (a) 10 
mm (1e-5 km), (b) 1 mm (1e-6 km), (c) 100 μm (1e-7 km), and (d) 10 μm (1e-8 km). Smaller values imply more 
accurate coefficients. Note that all values are unitless.

Table 4. RMS geoid height differences for all data sets

Range Noise Sigma 
(km)

RMS Geoid Height Difference for Each Data Set1 (m) Avg. 
(m)1 2 3 4 5 6 7 8 9 10

1e-5 0.617 0.724 0.613 0.604 0.605 0.751 0.614 0.692 0.628 0.588 0.644
1e-6 0.229 0.215 0.227 0.233 0.232 0.228 0.228 0.234 0.220 0.225 0.227
1e-7 0.211 0.206 0.221 0.218 0.237 0.230 0.218 0.212 0.221 0.212 0.218
1e-8 0.213 0.213 0.220 0.220 0.218 0.219 0.215 0.210 0.217 0.221 0.217

1 Smaller values imply a more accurate geopotential model.
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red, and regions with lower geoid heights are in blue. If the 

geopotential recovery process and data were perfectly ideal, 

every part of the Earth must have the same geoid height as the 

true geoid height, making the map green everywhere. From 

Table 4 and Fig. 5, we can easily conclude that the geopotential 

coefficients are undeniably poor in accuracy when the range 

noise sigma is 10 millimeters (Fig. 5 (a)), compared to the 

other three cases with higher precision (Fig. 5(b)-5(d)). This 

outcome is consistent with the conclusions made from Figs. 

3 and  4. In Table 4, a slight difference in the averaged RMS 

values can be found between the 1 millimeter case and the 

other two cases with higher precision. We think that this 

slight difference is concordant with the slight but definite 

improvement in high-degree and low-order coefficients that 

was discussed while we were interpreting Fig. 4.

From what we have discussed, we conclude that the 

critical ranging precision (one-sigma) lies between several 

hundred micrometers and a few millimeters, and that 

this critical precision can be assumed to be the minimum 

requirement of the ranging system. One could expect 

that if the POD precision were improved, this minimum 

requirement would become smaller (more stringent) so 

that the critical ranging precision could be matched with 

the improved POD precision. To check if this assumption is 

correct, the same procedures were performed again with 40 

totally different data sets in which the data were perturbed 

with ten times more precise POD than the original case (e.g., 

the absolute position 3D noise sigma was 1e-5 km instead of 

1e-4 km). The result, shown in the same format as in Fig. 3, 

is displayed in Fig. 6. There are two points to be mentioned 

about Fig. 6 in comparison with Fig. 3. One is the overall 

improvement in the accuracy of the geopotential models 

obtained. The result itself it not something to be surprised 

about, because there was an improvement in the POD 

precision while the ranging precision was kept at the same 

level. However, one specific aspect to be noted is the different 

amount of improvement in the accuracy of geopotential 

models. Only a slight improvement was found for the 10 

millimeter case (red lines), while a major improvement 

of about one order of magnitude can be seen in the other 

three cases. In the 10 millimeter case, the accuracy was 

chiefly limited by the imprecise range information, so the 

introduction of more precise POD could not bring about 

a considerable amount of change. In contrast, in the other 

three cases with higher ranging precision, the accuracy was 

primarily limited by the imprecise POD, and consequently 

Fig. 5. Map of geoid height differences for the worst data set among the ten sets sharing the same range noise sigma of (a) 
10 mm (1e-5 km), (b) 1 mm (1e-6 km), (c) 100 μm (1e-7 km), and (d) 10 μm (1e-8 km).

Fig. 6. Averaged RMS coefficient differences per degree, for the 
improved POD case. See Fig. 3 for a more detailed description.
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the enhanced POD resulted in a significant improvement. 

The other point to be mentioned is the stricter minimum 

precision requirement, as we predicted. In Fig. 6, unlike 

in Fig. 3, the bright green line that corresponds to the 1 

millimeter case can be distinguished from the blue and 

purple lines, implying that the critical ranging measurement 

precision (one-sigma) is a few hundred micrometers, which 

is smaller than that of the original (less precise POD) cases.

5. CONCLUSIONS

In this study, geopotential coefficient recovery was per-

formed on data sets generated and processed by assuming 

a hypothetical GRACE-like mission. The crude acceleration 

approach was used in recovering coefficients. We were able 

to make a rough guess of the accuracy of the coefficients 

obtainable from the hypothetical mission. During the process, 

we were also able to estimate the minimum requirement for 

the on-board ranging system to be adopted in such mission.

Assuming the POD precision given in Table 2, we conclude 

that the minimum one-sigma precision requirement for the 

ranging device is between several hundred micrometers 

and a few millimeters. It should be emphasized that this is 

the minimum requirement, not the ultimate one. We also 

conclude that the expected accuracy of the normalized 

geopotential coefficients is approximately between the order 

of 10-9 and 10-10, if the ranging precision satisfies the minimum 

requirement we just mentioned. Nevertheless, this result 

is a rough figure and there is room for improvement if we 

employ more delicate techniques that can take advantage of 

highly precise range information. On the other hand, there 

are some factors we have not considered in our simulation 

that negatively affect the recovery process. For instance, if it 

is decided to install an on-board accelerometer to directly 

measure the non-gravitational accelerations, errors in the 

accelerometer measurements would have an adverse effect on 

the accuracy of geopotential recovery. It should also be noted 

that there are numerous other parameters that could also 

affect the quality of the resulting coefficients, such as the initial 

distance between the satellites (Wei et al. 2012), the amount 

of data used in recovery, the maximum degree and order of 

coefficients to be recovered (Gunter et al. 2006), the sampling 

frequency of the ranging system, and the type of filter used in 

processing the raw data. Thus, the impacts of all such factors 

should be thoroughly investigated before an actual mission 

is attempted. Moreover, since the parameters used in this 

study are fixed at specific values, the result obtained herein 

is applicable to a very limited number of cases. Still, the 

methods we have followed can be applied to other cases in 

which different parameters are used, or possibly to parametric 

studies of different parameters.
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