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This paper presents relative navigation using intermittent laser-based measurement data for spacecraft flying formation that 
consist of two spacecrafts; namely, chief and deputy spacecrafts. The measurement data consists of the relative distance 
measured by a femtosecond laser, and the relative angles between the two spacecrafts. The filtering algorithms used for the 
relative navigation are the extended Kalman filter (EKF), unscented Kalman filter (UKF), and least squares recursive filter 
(LSRF). Numerical simulations reveal that the relative navigation performances of the EKF- and UKF-based relative navigation 
algorithms decrease in accuracy as the measurement outage period increases. However, the relative navigation performance 
of the UKF-based algorithm is 95 % more accurate than that of the EKF-based algorithm when the measurement outage period 
is 80 sec. Although the relative navigation performance of the LSRF-based relative navigation algorithm is 94 % and 370 % less 
accurate than those of the EKF- and UKF-based navigation algorithms, respectively, when the measurement outage period is 
5 sec; the navigation error varies within a range of 4 %, even though the measurement outage period is increased. The results 
of this study can be applied to the design of a relative navigation strategy using the developed algorithms with laser-based 
measurements for spacecraft formation flying.
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1. INTRODUCTION

Spacecraft formation flying has several advantages such 

as flexible configurations of formations with respect to space 

missions, and practicable costs for production and launches. 

Moreover, there have been significant contributions to the 

field of space missions (Tapley et al. 2004; Krieger et al. 

2007). Precise relative navigation (orbit estimation) that 

provides the relative position and velocity of each spacecraft 

with respect to the other is an essential part of spacecraft 

formation flying missions. Recently, significant attention 

was attracted by a laser instrument, given that it can pre-

cisely measure the relative distance between spacecrafts 

in formations (Shaddock 2008; Wang et al. 2011; Sheard et 

al. 2012). The precise measurement of the relative distance 

can help improve the performance of relative navigation. 

Numerical simulations by Jung et al. (2012) revealed that the 

relative navigation for a pair of spacecrafts with consecutive 

laser-based measurements using the extended Kalman filter 

(EKF) could determine the relative position with errors 

at the millimeter-level at a relative distance of 10 km, and 

errors at the sub-millimeter level at a relative distance of  

1 km. However, consecutive measurements require that a 

laser mounted on a spacecraft in formation is precisely 

aimed at a target spacecraft. Otherwise, particularly in cases 

where the relative distance between the spacecrafts in 

formation is very long, measurement failure may occur if 

the other spacecraft is not targeted. It is therefore necessary 

to develop a relative navigation strategy for satellites flying 

in formation when laser measurements are intermittent.

Recently, there have been discussions on the relative navi-

gation for spacecraft formation flying using intermittent 

laser-based measurement data (Lee et al. 2017; Lee et al. 2018).  

Lee et al. (2017) developed a relative navigation algorithm 

that uses the least squares recursively with intermittent 

measurements, which is referred to as a least squares recur- 
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sive filter (LSRF)-based relative navigation algorithm in this 

paper. Lee et al. (2017) confirmed the degradation of the 

performance of the EKF-based relative navigation algorithm 

when measurements were carried out intermittently, and 

compared the performances of the EKF- and LSRF-based 

relative navigations. However, it was assumed that laser-

based measurement data were obtained at 10 Hz; thus, an 

unscented Kalman filter (UKF)-based relative navigation 

algorithm with intermittent measurements was developed, 

and the performances of the EKF- and UKF-based relative 

navigations were compared. In this study, numerical simu- 

lations of the EKF-, UKF-, and LSRF-based relative navigations 

were conducted for a pair of spacecrafts; namely, chief 

and deputy spacecrafts, with intermittent laser-based 

measurements. The simulation results were then analyzed. 

Thereafter, the most appropriate algorithm among the EKF-

, UKF-, and LSRF-based algorithms for real-time relative 

orbit estimation with intermittent measurements was 

determined by comparing the esti-mation accuracies and 

the computation times required for the estimations.

The remainder of the paper is organized as follows. In 

Sections 2 and 3, the dynamic model and laser-based meas- 

urement are introduced, respectively. The relative navi-

gation algorithms are discussed in Section 4. In Section 5, the 

results of the relative navigation simulations are presented, 

followed by the conclusions and directions for future work 

in Section 6.

2. DYNAMIC MODEL

In this study, a precise relative navigation algorithm with 

a precise dynamic model was developed for spacecrafts in 

low earth orbits (LEOs) using the two-body equation with 

the appropriate perturbations added, as expressed by Eq. (1):
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where μE represents the standard gravitational parameter 

of the Earth; r→ and r→̈ represent the absolute position and 

acceleration vector of a spacecraft in the earth-centered 

inertial (ECI) frame, respectively; and a→ geo , a→ drag , a→ 3rd , and a→ SRP  

represent perturbations due to the aspherical properties 

of the Earth, air drag, gravitational forces from the Sun and 

Moon, and solar radiation pressure, respectively. Moreover, 

JGM3 and the exponential model were employed for a→ geo 

and a→ drag , respectively. For a→ 3rd and a→ SRP , reference was made 

to Vallado (2013) and Jung et al. (2012). The absolute orbit 

(or absolute state vector) of the spacecraft X
→

ECI consists of 

the position and velocity, which are represented in the ECI 

frame, as expressed by Eq. (2):
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where ρ is the relative range; θ (azimuth) and ϕ (elevation) 

are the relative angles of the deputy with respect to the 

chief; and ρ4 , θ
4

, and ϕ
4

 are the rates of ρ, θ , and ϕ, respectively. 

A detailed description of the transformation from the ECI 

frame to the spherical frame can be found in Jung et al. (2012).

3. LASER-BASED MEASUREMENT

The measurement data for the relative navigation con-

sists of the relative range (ρ) measured by a femtosecond 

laser and the relative angles, namely, the azimuth (θ) and 

elevation (ϕ) between the two spacecrafts. The relative 

range can be produced by the femtosecond laser system, as 

described by Jang et al. (2014). The laser system is mounted 

on the chief spacecraft and operated by the principle of 

synthetic wavelength interferometry. In this study, the 

measurement value of the relative range from the laser 

system was evaluated using software that simulates a 

femtosecond laser. Fig. 1 presents the measurement per-

formance of the laser that is described by the mean and 

standard deviation of the measurement error with respect 

to distance. The mean and standard deviation of the error 

diverges after approximately 10 km; thus, 10 km is the 

distance limit of the femtosecond laser (Kang et al. 2017).

The relative angles of the deputy, with respect to the 

chief, that correspond to a laser direction were assumed 

to be obtained via the attitude determination of the chief. 

In this study, the uncertainty of the attitude determination 
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was discussed instead of the algorithm of the attitude 

determination. This uncertainty, represented by Gaussian 

random errors with a zero mean and a standard deviation of 

a certain value, was added to the true azimuth and elevation 

(Jung et al. 2012). These values, with the Gaussian random 

errors added, were assumed to be the measurement values 

of the relative attitude angles.

4. RELATIVE NAVIGATION ALGORITHMS

4.1 Nonlinear Discrete-time System

Consider a nonlinear discrete-time system that consists 

of the dynamic and measurement models as expressed in 

Eqs. (4) and (5):
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As seen in Eq. (8), the measurement model hk is the time-

invariant linear model H. The relative orbit X
→

rel,sph,k and 

the measurement data ρ, θ, and ϕ are represented in the 

spherical frame; thus, the measurement model H is [I3x3 03x3 ]. 

Adding the scale factor sf to H eliminates the drift due to the 

relative distance rate (Jung et al. 2012).

4.2 Extended Kalman Filter-Based Relative Navigation 

Algorithm with Intermittent Measurement

The EKF is a real-time estimator that approximates the 

Fig. 1. Mean (left figure) and standard deviation (right figure) of the 
measurement data error from the femtosecond laser with respect to 
distance (Kang et al. 2017).
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state vector of an object as a Gaussian random variable (GRV), 

and determines the best estimate of the state vector using 

measurement data in systems where both the dynamic 

model and sensor contain uncertainties (i.e., process noise 

and measurement noise). The EKF contains the two fun-

damental components: prediction and correction. The 

prediction component propagates the estimates of the state 

vector and error covariance matrix at a previous time step to 

obtain the predicted state vector and error covariance matrix 

at the current time step. The correction component corrects 

the predicted state vector and error covariance matrix using 

the measurement data and Kalman gain. These corrected 

values are the estimated state vector and error covariance 

matrix at the current time step. The detailed algorithm and 

equations of the EKF can be found in Vallado (2013). In the 

EKF, the mean of the state vector is propagated through a 

first-order linearized nonlinear system. If measurement 

data are consecutively available, the EKF can appropriately 

approximate a nonlinear system. Otherwise, the first-order 

linearization can induce estimation errors. In addition, if 

the initial error or the nonlinearity of the system increases, 

the EKF can provide suboptimal estimations (Lee & Alfriend 

2003).

In this study, the relative navigation for spacecraft 

formation flying with intermittent laser-based measurements 

was addressed. In previous studies that considered relative 

navigation using a femtosecond laser, it was assumed that 

measurements were carried out consecutively. Thus, the 

estimation algorithms in these studies based on the EKF 

implemented continuous prediction and measurement 

corrections (Jung et al. 2012; Lee et al. 2015; Oh et al. 2016). 

However, it is possible for measurement data to not be 

obtained consecutively due to failure in inter-spacecraft 

alignment, particularly in cases when the distance between 

spacecrafts is large. When there is no measurement 

data, measurement correction cannot be implemented. 

Therefore, if laser-based measurement data are available 

at a certain instant k in this study, both prediction and 

measurement corrections are implemented; otherwise, only 

the prediction correction is implemented.

Fig. 2 reveals how the EKF-based relative navigation 

algorithm with intermittent laser-based measurements is 

implemented. In the figure, X−k and P−k represent the predicted 

state vector, namely, the predicted relative orbit and error 

covariance matrix, respectively; and X^k and P^k  represent 

the estimated relative orbit and error covariance matrix, 

respectively. As can be seen in Fig. 2, the initial relative 

orbit by the initial orbit determination (IOD) X
→

IOD is set to 

the estimated relative orbit at the initial time step X^0. The 

relative navigation is then implemented. If laser-based 

measurement data are available for ρ, θ, and ϕ, prediction 

and measurement corrections are implemented. Otherwise, 

only the prediction correction is implemented.

4.3 Unscented Kalman Filter-based Relative Navigation  

Algorithm with Intermittent Measurements

The UKF is also a real-time estimator that can determine 

the best estimate of the state vector of an object using 

measurement data in systems where both the dynamic model 

and sensor contain uncertainties. Both the EKF and UKF 

approximate a state vector as a GRV. However, unlike 

the EKF, the UKF represents the Gaussian distribution of 

the state vector using sigma points based on unscented 

transformation (UT). The UKF propagates sigma points 

using a true dynamic model of a nonlinear system; thus, the 

UKF can accurately propagate the mean and corresponding 

error covariance matrix of the state vector to the 3rd order in 

the Taylor series expansion for all nonlinearities (Wan & Van 

Der Merwe 2000).

The distribution of sigma points is determined by the 

scaling parameters α, β, κ, and λ. Moreover, α affects the 

distribution of the sigma points around the mean of the GRV; 

β is used to incorporate prior knowledge of the distribution 

of the GRV; κ is a secondary scaling parameter; and λ is 

determined by λ=α2(n+κ)−n, where n is the dimension of the 

state vector (Wan & Van Der Merwe 2000; Kim et al. 2011). 

The filtering performance of the UKF, such as the accuracy 

and convergence in estimation, are significantly reliant on 

scaling parameters. Therefore, setting scaling parameters is 

a major issue when using UKF. Moreover, α is usually set as 

a small positive value such as 0≤α≤1. In Section 5, several 

navigation results that depend on α are presented; β=2 is 

optimal for Gaussian distributions; and κ is typically set as 0 
or 3−n (Wan & Van Der Merwe 2000; Kim et al. 2011). In this 

study, κ=3−n was used to minimize the difference between 

the moments of the standard Gaussian distribution and the 

sigma points up to the fourth order (Julier et al. 2000). The 

Fig. 2. Conceptual illustration of the implementation procedure of 
relative navigation algorithms that are based on EKF and UKF with 
intermittent laser-based measurements.
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detailed algorithm and equations of the UKF can be found 

in Wan & Van Der Merwe (2000).

The UKF is a type of Kalman filter, similar to the EKF. In 

other words, if laser-based measurement data are available 

at a certain instant k, both prediction and measurement 

corrections are implemented. Otherwise, only the predic-

tion correction is implemented. Fig. 2 presents the imple-

mentation procedure of UKF-based relative navigation with 

intermittent laser-based measurements.

4.4 Least Squares Recursive Filter-based Relative Navigation 

Algorithm with Intermittent Measurements

The least squares method is a post-processing estimator 

for the state vector of an object. It determines the best 

estimate of a state vector at a given instant that minimizes 

the sum of the square of residuals between the measurement 

data and computed measurement data, which is carried 

out using a measurement model. As a post-processing 

estimator, the least squares method uses an entire set of 

measurement data within a given time-period. In this study, 

the nonlinear weighted least squares method was used. 

The nonlinear weighted least squares method can estimate 

a state vector in nonlinear systems by linearizing a system, 

obtaining an approximate solution, and iteratively refining 

the approximated solution (Vallado 2013). This iterative 

refining process is called “differential correction.” The 

detailed algorithm and equations of the least squares can be 

found in Vallado (2013).

In this study, a relative navigation algorithm was em-

ployed using least squares recursively. This algorithm 

was proposed by Lee et al. (2017) to solve the degradation 

problem of the EKF-based algorithm, and is termed the 

LSRF-based relative navigation algorithm in this paper. 

Before implementing the LSRF-based relative navigation 

algorithm, a fixed time interval must be defined to obtain 

measurement data. It was assumed that a laser-based 

measurement outage period was fixed and could be deter-

mined. A fixed-time interval was therefore set to obtain 

measurement data equal to the measurement outage period. 

Hereinafter, the ratio of the fixed-time interval to obtain 

measurement data equal to the measurement outage period 

is referred to as the “window size”. Moreover, the window 

size was 1. The period for the estimation of the relative orbit 

through the LSRF-based relative navigation algorithm was 

set to a product of the window-size and measurement outage 

period. Thus, the window-size is an indicator of how many 

measurement data sets are used in the relative navigation.

Fig. 3 illustrates the implementation of an LSRF-based 

relative navigation algorithm with intermittent laser-based 

measurements. Following the determination of the initial 

relative orbit X
→

IOD, the navigation for the relative orbit X^k 

commences. At the initial time step (k=0), the LSRF-based 

algorithm set X
→

IOD as a nominal relative orbit X
→

nom,0. For 

example, it is assumed that measurements could be made 

at the initial time step and at fixed 10 sec intervals. The 

Fig. 3. (a) Conceptual illustration of the implementation procedure of the LSRF-based relative navigation 
algorithm. (b) Flowchart describing the process of estimation and propagation in the LSRF-based relative 
navigation algorithm.
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window-size is 1; thus, navigation using measurement data 

at 0 sec and 10 sec is carried out at 10 sec. The LSRF-based 

algorithm propagates X
→

nom,0 to calculate the relative orbits 

at 10 sec (X−10) and the computed measurement data ρcom,0, 

θcom,0, ϕcom,0, ρcom,10, θcom,10, and ϕcom,10 that correspond to the  

relative orbits at 0 sec and 10 sec. Then, using measurement 

data at 0 sec and 10 sec (ρ0, θ0, ϕ0, ρ10, θ10, and ϕ10), the 

algorithm calculates the measurement residual b
~

 and the 

partial derivative matrix A of the least squares. With b
~

 and 

A, the correction vector for the initial nominal relative orbit 

δX
→

SPH,rel,0 can be calculated using the normal equation of the 

least squares. Thereafter, X
→

nom,0 can be updated to X
→

updated,0 

by adding δX
→

SPH,rel,0. The iterative differential correction for 

the initial relative orbit stops if the root-mean-square of the 

residual matrix b
~

 remains constant within a given tolerance, 

which was set to 5×10-8 in this study. Satisfying the stopping 

criterion means that the least squares finds the best 

estimate of the relative orbit at the initial time step X^0. If the 

stopping criterion is not satisfied, the least squares restarts 

with updated relative orbits X
→

updated,0. In the next process, the 

algorithm propagates X^0 to time step 10 sec. The propagated 

relative orbit at 10 sec X−10 is set to the nominal relative orbit 

X
→

nom,10 of the next navigation process at 20 sec. At 20 sec, the 

algorithm finds the best estimate of the relative orbit at 10 

sec (X^0) using measurement data at 10 sec and 20 sec (ρ10, 
θ10, ϕ10, ρ20, θ20, and ϕ20). The algorithm then propagates X^10 

to X−20 and sets X−20 as X
→

nom,20 for the next navigation process at 

30 sec. The LSRF-based relative navigation algorithm with 

intermittent laser-based measurements is implemented 

over the simulation time-period in this recursive manner.

5. NUMERICAL SIMULATIONS AND ANALYSES

5.1 Relative Navigation Simulations

Numerical simulations were implemented to analyze 

and compare the performances of the three relative navi-

gation algorithms based on EKF, UKF, and LSRF for 

spacecraft formation flying with intermittent laser-based 

measurements. The simulations considered two spacecrafts; 

namely, chief and deputy spacecrafts that orbit the Earth, 

forming a projected circular orbit (PCO). The chief at an 

altitude of 613 km is assumed to have a circular orbit around 

the Earth at an inclination of 97.8°. The initial radius of the 

PCO was set as 10 km, given that the distance limit of the 

femtosecond laser is 10 km. It was assumed that the chief 

was equipped with the femtosecond laser instrument, and 

the deputy had a reflector mirror to return the laser signal.

The true orbits of the chief and deputy were determined 

by the numerical integration of the dynamic model based on 

Eq. (1). For the true orbits, the perturbation was driven by the 

unknown acceleration a→ unknown of magnitude 10-14 m/s2 , which 

was added to Eq. (1) as described in Eq. (9), given that the 

true orbits can never fully be known (Jung et al. 2012).
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degree and order 20×20. The dynamic model for the relative 

navigation algorithms is the two-body equation with the 
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property of the Earth of degree and order 2×0a→J2 , as described 

in Eq. (10), to reduce the computational load for real-time 

navigation.
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In cases where a laser mounted on the chief in formation 

is precisely aimed at the deputy, laser-based measurement 

data are consecutively obtained. However, this study 

addresses the relative navigation with intermittent meas-

urements, under the assumption that the targeting of the 

deputy is not always guaranteed, due to the large relative 

distance. In this study, the laser-based measurement out-

age period was assumed to be constant throughout the 

simulation. For example, if the outage period is set as 10 sec, 

laser-based measurement data would be obtained in 10 sec 

intervals during the simulation (see Fig. 4). Simulations with 

different measurement outage periods were implemented 

to determine the influence of intermittent laser-based 

measurements on the relative navigation.

The simulation time was set as 6,000 sec, and the uncer-

tainty of the attitude determination of the chief was as-

sumed to be 0.001° for every simulation.

5.2 Numerical Results

 Given that the scaling parameters within the UKF sig-

nificantly influence the estimation performance, the 

simulations of the relative navigation of the UKF-based 

algorithm were implemented in advance, while adjusting 

Fig. 4. Conceptual diagram describing how the intermittent laser-based 
measurement data are obtained when the measurement outage period is 
10 sec.
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the scaling parameters. The influence of α is more signifi-

cant than that of β, κ, and λ; thus, only α was adjusted, and 

the remaining parameters were set as β=2 and κ=3−n (Lee 

et al. 2018). Moreover, λ was determined by 3α2−6 (Wan 

& Van Der Merwe 2000). The initial relative orbit was 

obtained by adding the IOD error to the true orbit, and 

the following are the conditions of simulation case 1. The 

IOD errors correspond to a relative position and velocity 

of approximately 20 m and 20 cm/s between the chief and 

deputy, respectively. The initial error covariance matrix P0 

was defined as expressed in Eq. (11):
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The simulation time was set as 6,000 sec, and the uncertainty of the attitude determination of the 
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correspond to a relative position and velocity of approximately 20 m and 20 cm/s between the chief 
and deputy, respectively. The initial error covariance matrix 𝑃𝑃� was defined as expressed in Eq. (11): 
 

          𝑃𝑃� 𝛽 𝑀𝑀�����
�                                                    (11) 

 
where 𝑀𝑀�����

�  is a diagonal matrix in which the diagonal entries correspond to the IOD error. 
Moreover, Q and R were empirically determined to improve the relative navigation performance. Fig. 
5 presents the various navigation errors while adjusting 𝛼𝛼 for simulation case 1. The numbers in the 
legend in Fig. 5 denote the measurement outage period.  
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error is a diagonal matrix in which the diagonal 

entries correspond to the IOD error. Moreover, Q and R were 

empirically determined to improve the relative navigation 

performance. Fig. 5 presents the various navigation errors 

while adjusting α for simulation case 1. The numbers in the 

legend in Fig. 5 denote the measurement outage period. 

The navigation errors in the y-axis in Fig. 5 are represented 

by the RMSerr in Eq. (12), which is a root-mean-square (RMS) 

value of the navigation errors in the relative position at 

instants when the laser-based measurement was performed 

throughout the simulation time-period. The navigation 

error is the difference between the estimated relative orbit 

and true relative orbit.
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Fig. 5. Navigation errors of the UKF-based relative navigation algorithm while adjusting α  for 
simulation case 1 (IOD errors: 20 m and 20 cm/s for the relative position and velocity, respectively). 
 

The navigation errors in the y-axis in Fig. 5 are represented by the 𝑅𝑅𝑅𝑅𝑅𝑅err in Eq. (12), which is a 
root-mean-square (RMS) value of the navigation errors in the relative position at instants when the 
laser-based measurement was performed throughout the simulation time-period. The navigation error 
is the difference between the estimated relative orbit and true relative orbit. 

 

𝑅𝑅𝑅𝑅𝑅𝑅3D,err,𝑘𝑘𝑖𝑖 = √𝑅𝑅err,𝑘𝑘𝑖𝑖
2 + 𝑅𝑅err,𝑘𝑘𝑖𝑖

2 +𝑅𝑅err,𝑘𝑘𝑖𝑖
2  

𝑅𝑅𝑅𝑅𝑅𝑅err = √∑ (𝑅𝑅𝑅𝑅𝑅𝑅3D,err,𝑘𝑘𝑖𝑖)𝑁𝑁
𝑖𝑖=1

2

𝑁𝑁  

 
In Eq. (12), 𝑅𝑅𝑅𝑅𝑅𝑅3D,err,𝑘𝑘𝑖𝑖 is the norm of the navigation error at a relative position, which is represented 
in the RSW frame that originates at the center of the mass of the chief at 𝑘𝑘𝑖𝑖; 𝑅𝑅err,𝑘𝑘𝑖𝑖, 𝑅𝑅err,𝑘𝑘𝑖𝑖 , and 
𝑅𝑅err,𝑘𝑘𝑖𝑖 are the navigation errors of the relative position in the R-, S-, and W-axis of the RSW frame at 
𝑘𝑘𝑖𝑖, respectively; and 𝑁𝑁 is the number of instants in which the laser-based measurement is performed, 
throughout the simulation time-period. 

The navigation results are more accurate when 𝛼𝛼 > 1 × 10−3 than when 𝛼𝛼 is smaller. Simulations 
with α ≤ 2 × 10−5  could not be implemented, given that the error covariance matrix was not a 
positive semi-definite at a certain instant, i.e., the matrix was not a true error covariance matrix. 

Similar results were obtained in simulation case 2, in which the IOD errors were changed to 
approximately 200 m and 2 m/s for the relative position and velocity, respectively. The matrices P, Q, 
and R were determined in the same manner as in simulation case 1. Fig. 6 presents the various 
navigation errors in the relative position while adjusting α for simulation case 2, and the numbers in 
the legend in Fig. 6 denote the measurement outage period. In simulation case 2, the navigation results 
were more accurate when 𝛼𝛼 > 1 × 10−3 than when 𝛼𝛼 was smaller.  

 

 

(12) 
 (12)

In Eq. (12), RSW3D,err,ki is the norm of the navigation error 

at a relative position, which is represented in the RSW frame 

that originates at the center of the mass of the chief at ki; 

Rerr,ki, Serr,ki, and Werr,ki are the navigation errors of the relative 

position in the R-, S-, and W-axis of the RSW frame at ki, 

respectively; and N is the number of instants in which the 

laser-based measurement is performed, throughout the 

simulation time-period.

The navigation results are more accurate when α>1×10-3  

than when α is smaller. Simulations with α≤2×10-5 could 

not be implemented, given that the error covariance matrix 

was not a positive semi-definite at a certain instant, i.e., the 

matrix was not a true error covariance matrix.

Similar results were obtained in simulation case 2, in 

which the IOD errors were changed to approximately 200 m 

and 2 m/s for the relative position and velocity, respectively. 

The matrices P, Q, and R were determined in the same man-

ner as in simulation case 1. Fig. 6 presents the various navi-

gation errors in the relative position while adjusting α for 

simulation case 2, and the numbers in the legend in Fig. 6 

denote the measurement outage period. In simulation case 2, 

the navigation results were more accurate when α>1×10-3 

than when α was smaller. 

The UKF can accurately estimate the state vector by 

selecting and propagating sigma points that appropriately 

correspond to the error covariance of the state vector. 

However, if α is sufficiently small, only the sigma points 

that consider nonlinearity and are very close to the mean of 

the state vector are propagated. This type of propagation is 

similar to the mean-propagating approach of the EKF, and 

results in the suboptimal performance of the UKF-based 

relative navigation. The relative navigation results for α>10-3  

Fig. 5. Navigation errors of the UKF-based relative navigation algorithm 
while adjusting α for simulation case 1 (IOD errors: 20 m and 20 cm/s for 
the relative position and velocity, respectively).

Fig. 6. Navigation errors of the UKF-based relative navigation algorithm 
while adjusting α for simulation case 2 (IOD errors: 200 m and 2 m/s for 
the relative position and velocity, respectively).
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are therefore better than those for α<10-3.

The performances of the three relative navigation 

algorithms based on the EKF, UKF, and LSRF for space-

craft formation flying with intermittent laser-based meas-

urements were compared by implementing relative navi-

gation simulations for simulation cases 1 (small IOD error) 

and 2 (large IOD error). The scaling parameter α within the 

UKF-based algorithm was set as 1×10-2, and the navigation 

errors in the y-axis in Figs. 7 and 8 were represented by 

RMSerr in Eq. (12).

As shown in Figs. 7 and 8, the relative navigation results 

of the EKF-based algorithm became less accurate as the 

measurement outage period increased. The results of the 

UKF-based navigation algorithm also became less accurate 

as the measurement outage period increased; however, 

the overall accuracy was improved. Although the naviga-

tion errors for the LSRF-based algorithm were larger than 

those for the EKF- and UKF-based algorithms when the 

measurement outage period was very small, the error varied 

within a very small range, even though the measurement 

outage period increased. In simulation case 1, when the 

measurement outage periods were increased from 5 sec to 

80 sec, the navigation error increased by 493 % for the EKF-

based algorithm, 125 % for the UKF-based algorithm, and 

0.2 % for the LSRF-based algorithm. The navigation result 

of the LSRF-based algorithm was 282 % and 361 % less 

accurate than that of the EKF- and UKF-based algorithms, 

respectively, when the measurement outage period was 5 

sec. The navigation result of the UKF-based algorithm was 69 

% and 51 % more accurate than that of the EKF- and LSRF-

based algorithms when the measurement outage period was 

80 sec. In simulation case 2, when the measurement outage 

periods were increased from 5 sec to 80 sec, the navigation 

error increased by 1,577 % for the EKF-based algorithm and 

120 % for the UKF-based algorithm. Although the navigation 

error of the LSRF-based algorithm decreased by 4 %, the 

standard deviation of the navigation error increased. The 

navigation result of the LSRF-based algorithm was 94 % and 

370 % less accurate than that of the EKF- and UKF-based 

algorithms, respectively, when the measurement outage 

period was 5 sec. The navigation result of the UKF-based 

algorithm was 95 % and 52 % more accurate than that of the 

EKF- and LSRF-based algorithm when the measurement 

outage period was 80 sec.

Figs. 9, 10, and 11 present the navigation errors of the 

EKF-, UKF-, and LSRF-based algorithms, respectively, in the 

relative position for the spherical frame over the simulation 
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simulation case 2 (IOD errors: 200 m and 2 m/s for the relative position and velocity, respectively). 
 

The UKF can accurately estimate the state vector by selecting and propagating sigma points that 
appropriately correspond to the error covariance of the state vector. However, if 𝛼𝛼  is sufficiently 
small, only the sigma points that consider nonlinearity and are very close to the mean of the state 
vector are propagated. This type of propagation is similar to the mean-propagating approach of the 
EKF, and results in the suboptimal performance of the UKF-based relative navigation. The relative 
navigation results for 𝛼𝛼 > 10�� are therefore better than those for 𝛼𝛼 < 10��. 

The performances of the three relative navigation algorithms based on the EKF, UKF, and LSRF for 
spacecraft formation flying with intermittent laser-based measurements were compared by 
implementing relative navigation simulations for simulation cases 1 (small IOD error) and 2 (large 
IOD error). The scaling parameter α within the UKF-based algorithm was set as 1 × 10��, and the 
navigation errors in the y-axis in Figs. 7 and 8 were represented by 𝑅𝑅𝑅𝑅𝑅𝑅��� in Eq. (12). 

 

 
Fig. 7. Relative navigation errors of the UKF-, EKF-, and LSRF-based relative navigation algorithms 
for simulation case 1. 

 

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

0 10 20 30 40 50 60 70 80

R
el

at
iv

e 
po

si
tio

n 
es

tim
at

io
n 

er
ro

r (
cm

)

Measurement outage period (sec)

EKF

LSRF

UKF

Fig. 7. Relative navigation errors of the UKF-, EKF-, and LSRF-based 
relative navigation algorithms for simulation case 1.
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Fig. 8. Relative navigation errors of the UKF-, EKF-, and LSRF-based relative navigation algorithms 
for simulation case 2. 

 
As shown in Figs. 7 and 8, the relative navigation results of the EKF-based algorithm became less 

accurate as the measurement outage period increased. The results of the UKF-based navigation 
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accuracy was improved. Although the navigation errors for the LSRF-based algorithm were larger 
than those for the EKF- and UKF-based algorithms when the measurement outage period was very 
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Fig. 8. Relative navigation errors of the UKF-, EKF-, and LSRF-based 
relative navigation algorithms for simulation case 2.

Fig. 9. Navigation errors of the EKF-based relative navigation algorithm 
in the relative position for the spherical frame over the simulation time-
period for simulation case 1.
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time-period for simulation case 1. The measurement outage 

period was 50 sec in the figures, and the measurement error 

in the figures refers to the difference between ρ, θ, and ϕ for 

the true relative orbit and the laser-based measurement 

values.

The differences in the navigation performances are due to 

the characteristics of the filtering algorithms. Based on the 

assumption that the dynamic and measurement models are 

quasi-linear, the EKF linearizes dynamic and measurement 

models in its estimation process (Lee & Alfriend 2007). In 

addition, the EKF estimates a current state vector based on 

previously estimated state vectors; thus, errors in previously 

estimated state vectors continuously accumulate in a cur-

rently estimated state vector. In this study, the EKF-based 

algorithm does not implement measurement correction 

at a given instant when measurements are not performed. 

Accordingly, the navigation performance of the EKF-based 

algorithm decays when the nonlinearity of the system is 

strengthened by the long measurement outage period (Lee 

& Alfriend 2003).

However, the UKF does not contain a linearizing approach 

or assumptions similar to those considered by the EKF. 

Instead, the UKF selects sigma points that can appropriately 

capture the mean and error covariance of the state vector 

that is represented by the GRV, and the sigma points are 

propagated via the nonlinear dynamic model to precisely 

predict the state vector and error covariance matrix. Thus, 

the UKF-based algorithm can estimate the relative orbit 

more precisely than the EKF-based algorithm.

The least squares method estimates the state vector at an 

instant that minimizes the sum of the square of the meas-

urement residuals. Thus, the navigation and measurement 

errors in the relative angles (respectively θ and ϕ) are very 

close, as can be seen in Fig. 11, given that both the laser-

based measurement and relative position are represented 

in the spherical frame. However, the estimated relative 

distance is closer to the true relative distance than the 

measured relative distance, given that the scale factor in the 

measurement model sf eliminates the drift in the measured 

relative distance. In addition, the estimation performance 

of the least squares method depends on the quality and 

quantity of the measurement data. Accordingly, the navi-

gation performance was insensitive to the measurement 

outage period, given that the same quality and quantity of 

measurement data were used in the relative navigation, 

regardless of the measurement outage period. Generally, 

among the discussed methods, least squares is expected 

to estimate the state vector with the highest precision, due 

to its post-processing. However, in this study, only six sets 

data were used by the LSRF-based algorithm to use the least 

squares as a real-time estimator. If more measurement data 

for estimation is inputted to the LSRF-based algorithm, the 

estimation performance will improve.

The mean computation time for the relative navigation 

was 0.021 sec for the EKF-based algorithm, 0.082 sec for the 

UKF-based algorithm, and 1.012 sec for the LSRF-based 

algorithm. Although the computation times of the EKF- and 

UKF-based algorithms were similar, the computation time of 

the LSRF-based algorithm was significantly larger, given that 

the least squares in the LSRF-based algorithm implemented 

an iterating differential correction. If 1 sec is a criterion time of 

real-time relative navigation, the LSRF-based algorithm is not 

Fig. 10. Navigation errors of the UKF-based relative navigation 
algorithm in the relative position for the spherical frame over the 
simulation time-period for simulation case 1.

Fig. 11. Navigation errors of the LSRF-based relative navigation 
algorithm in the relative position for the spherical frame over the 
simulation time-period by for simulation case 1.
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appropriate for real-time relative navigation (Jung et al. 2012).

6. CONCLUSION

In this paper, the EKF-, UKF-, and LSRF-based relative 

navigations with intermittent laser-based measurements 

for spacecrafts flying in formation are considered, and 

the influence of the measurement outage period on the 

relative navigation performance is presented. Numerical 

simulations revealed that the relative navigation results of 

the EKF-based relative navigation algorithm decreased in 

accuracy as the measurement outage period increased. 

Considering the significant influence of the scaling param-

eters (especially α) on the estimation performance of the UKF, 

 the effect of the scaling parameter α on the UKF-based 

relative navigation was analyzed. The navigation results 

were more accurate when α>1×10-3 than when α was 

smaller, and α was set as 1×10-2 when the UKF-based relative 

navigation algorithm was implemented. The relative navi- 

gation results of the UKF-based gorithm also became 

inaccurate; however, the navigation performance was 

improved in comparison with that of the EKF-based 

algorithm. Although the relative navigation results of 

the LSRF-based algorithm were less accurate than those 

of the EKF- and UKF-based algorithms when the meas-

urement outage period was very short, the navigation error 

varied within a very small range, even though the meas-

urement outage period increased. With respect to the 

relative navigation performance and computation time; 

among the three algorithms, the UKF-based algorithm 

is the most appropriate for real-time relative navigation 

with intermittent laser-based measurements. The results 

and analyses from this study can be used for the design 

of relative navigation algorithms for spacecraft formation 

flying using laser-based measurements. In future studies, 

the relative navigation performances of the three algorithms 

under different conditions should be analyzed, especially 

that of randomly intermittent measurement data.
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