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The deep space orbit determination software (DSODS) is a part of a flight dynamic subsystem (FDS) for the Korean 

Pathfinder Lunar Orbiter (KPLO), a lunar exploration mission expected to launch after 2018. The DSODS consists of several 

sub modules, of which the orbit determination (OD) module employs a weighted least squares algorithm for estimating the 

parameters related to the motion and the tracking system of the spacecraft, and subroutines for performance improvement 

and detailed analysis of the orbit solution. In this research, DSODS is demonstrated and validated at lunar orbit at an 

altitude of 100 km using actual Lunar Prospector tracking data. A set of a priori states are generated, and the robustness 

of DSODS to the a priori error is confirmed by the NASA planetary data system (PDS) orbit solutions. Furthermore, the 

accuracy of the orbit solutions is determined by solution comparison and overlap analysis as about tens of meters. Through 

these analyses, the ability of the DSODS to provide proper orbit solutions for the KPLO are proved.

Keywords:	Korea Pathfinder Lunar Orbiter (KPLO), deep space network (DSN), orbit determination (OD), Lunar Prospector, 

demonstration, validation, stress test, solution comparison, overlap analysis

1. INTRODUCTION

The Korean Pathfinder Lunar Orbiter (KPLO) is lunar 

exploration mission expected to launch after 2018 with 

an orbit about 100 km above the surface of the Moon. The 

Korea Aerospace Research Institute (KARI) is currently 

developing an entire system including the space, launch 

and ground segments. The ground segment consists of 

two centers, the mission operation center (MOC) and 

the payload data center (PDC). The MOC consists of 

subsystems such as the telemetry, tracking and command 

(TTC) subsystem, the real-time operation subsystem 

(ROS) and the flight dynamic subsystem (FDS) (Song et al. 

2016). The Yonsei University has been participating in the 

development of the FDS, and has generated a prototype 

orbit determination software (Lee et al. 2016). The deep 

space orbit determination software (DSODS) is an improved 

form of the prototype software, which was developed using a 

MATLAB based Object Oriented Programming scheme and 

comprises of several submodules, i.e., orbit determination 

(OD), orbit prediction (OP), data simulation (DS) and event 

prediction (EP) (Kim et al. 2017).

Various orbit determination softwares were employed in 

previous deep space missions. The SMART-1 mission used 

Advanced Modular Facility for Interplanetary Navigation 

(AMFIN) libraries (Mackenzie et al. 2004). The GEODYN 

was used for precise orbit determination in the case of 

the Chang’e-1, the first Chinese lunar exploration mission 

(Jianguo et al. 2010), and the Lunar Reconnaissance Orbiter 

(LRO) which provided a high-resolution survey of the Moon 

(Mazarico et al. 2012). For the Lunar Atmosphere and Dust 

Environment Explorer (LADEE) mission, that aimed at 

determining the composition of the lunar atmosphere, dust 

environment and viability of optical laser communication 

technologies (D’Ortenzio et al. 2015), the orbit determination 

tool kit (ODTK), a commercial software of the AGI, was used 

for the operation. Although commercial softwares are verified 

through various missions and are easy to use, they are hard 
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to maintain and improve since their internal source codes 

are not provided. The DSODS is an independent software 

developed to support the KPLO, and serves as an asset of 

Korean space exploration. Moreover, it can be extended to the 

other deep space missions in the future.

The objectives of this research are to develop, demonstrate 

and validate DSODS. For the demonstration and validation, 

tracking data from the Lunar Prospector, provided by the 

NASA planetary data system (PDS), was applied to the 

DSODS. A Monte-Carlo simulation is conducted to verify 

the statistical correlation between orbit solutions and the 

estimated covariance matrix. Furthermore, the results 

are analyzed through solution comparison and overlap 

analysis. Section 2 presents the construction of DSODS and 

some details of the sub-modules, such as the functionality 

requirements and subroutines. The demonstration and 

validation of results using the Lunar Prospector tracking data, 

are described in Sections 3 and 4, respectively. Section 5 

summarizes the overall results.

2. ORBIT DETERMINATION SOFTWARE

The current orbit determination software is designed and 

developed to satisfy the orbit determination requirement of 

the KPLO. Since a quantitative requirement has not yet been 

established, the software is aimed at acquiring an orbital 

accuracy of 1 km, identical to that on the existing lunar 

exploration mission, Lunar Prospector (Binder et al. 1998). 

This section addresses the overall construction and details 

of the DSODS.

2.1 Overview

Orbit determination is procedure to obtain parameters 

that are related to the motion and the tracking data of the 

spacecraft. The procedure requires a system model and an 

estimation algorithm to predict the tracking data and estimate 

parameters using actual tracking data. The system model 

can be divided into a dynamic model and a measurement 

model. The dynamic model includes the force models acting 

on the spacecraft and a numerical integrator for the orbit 

propagation. The measurement model includes the tracking 

algorithm and hardware characteristics to simulate the 

tracking data. In the DSODS, each model is implemented in 

two submodules: OP module and DS module. Furthermore, 

the OD module consists of an estimation algorithm and some 

useful subroutines. Kim et al. (2017) presented an overview 

of the DSODS, including its construction, data flow and user 

interfaces of the submodules. Fig. 1 shows the brief data flow 

of DSODS and subroutines of the module, whose details are 

explained subsequently.

In case of the OP module, a general mission analysis tool 

(GMAT) is employed as a third-party software component 

using a MATLAB-executable (MEX) interface (Kim et al. 

2017). The GMAT was developed by NASA GSFC and has 

been used in missions such as the Lunar Crater Observation 

and Sensing Satellite (LCROSS) and the Acceleration, 

Fig. 1. Brief data flow of the DSODS focused on the OD module and its submodules.
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Reconnection, Turbulence and Electrodynamics of the 

Moon’s Interaction with the Sun (ARTEMIS). The force model 

and numerical integrator (propagator) are determined and 

validated using multiple test scripts (Hughes et al. 2014). The 

OP module receives the settings for the orbital prediction, 

such as a gravity model and accuracy of the propagator, from 

the OD module, and transfers the propagated states set, i.e., 

ephemeris, in the form of a satellite tool kit (STK) format.

Alternatively, the DS module is developed by Yonsei to 

simulate the tracking data. NASA’s deep space network (DSN), 

near earth network (NEN) and universal space network (USN) 

are usually employed for deep space missions (Policastri et 

al. 2015), and these stations provide various types of tracking 

data such as tracking angles, un-ramped two-way range 

and Doppler, and the difference between the uplink and the 

downlink frequency divided by the transponding ratio of the 

spacecraft (Chang 2015). In the DSODS, un-ramped two-way 

range and Doppler are modeled by the DS module, where 

the corrections for tropospheric delay and antenna offset 

delay are involved. I should be noted that the ramped range 

and Doppler, and the corrections for ionospheric delay and 

charged particle delay are being developed and will be added 

to the DS module. The DS module simulates tracking data 

by utilizing the configuration for the DS, the ephemeris and 

the mesh points are transferred from OD module, and the 

simulated tracking data is returned to the OD module.

In the OD module, a batch least squares algorithm is 

implemented. The batch type estimation is a post-processing 

method that treats all the observed data of an arc to 

determine the states at a specific epoch, while the sequential 

estimation algorithm estimates the states sequentially at each 

observation time. Batch estimation is a simple, more accurate 

and robust technique compared to sequential estimation 

algorithms, like the Kalman filter (Crassidis & Junkins 2011). 

The functionality requirements and subroutine algorithms 

are addressed in the following sections.

2.2 Functionality Requirements of the OD Module

The OD module is required to provide some necessary 

range of operations. Table 1 presents the functionality 

requirements of the OD module (Song et al. 2016). The 

functionality code categorizes the functionality requirement, 

and can consist of some sub-codes. In case of the ODF-0 (to 

read and write information from/to a text file), for instance, 

there are two sub-codes to print out and load information, 

and each function is developed within the OD module. Note 

that the functionality requirements and the correlated codes 

are subject to change should the details of the mission 

requirement and operating concepts change.

2.3 Subroutines of the OD Module

The OD module consists of multiple subroutines to estimate 

parameters, improve performance and support additional 

analysis. In this section, some representative subroutines, the 

weighted batch least squares, the specific/iterative data editor 

and the data handler are briefly explained.

The batch least squares algorithm estimates parameters 

using a system model (F):
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where 𝐏𝐏𝚫𝚫𝚫𝚫0  and 𝐗𝐗0 are the a priori covariance matrix and ‘solve-for’ vector respectively, and 𝐖𝐖 is the 
weight matrix. The a priori covariance matrix and weight matrix correspond to the a priori uncertainty and 
measurement noise: 
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where 𝜎𝜎𝑗𝑗 is the standard deviation of the 𝑗𝑗th element of the ‘solve-for’ vector, n is the dimension of the 
‘solve-for’ vector, 𝜚𝜚𝑘𝑘 is the noise level of the 𝑘𝑘th tracking data measurement and m is total number of 
tracking data measurements. 

The optimal solution is evaluated by the Newton-Rapson method, that uses 1st order approximations 
under the assumption of differentiability of the system model and the suitability of the a priori states. 
Through several iterations, the ‘solve-for’ vector is updated using the variate of the 𝑖𝑖th iteration (Δ𝐗𝐗𝑖𝑖) 
(Long et al. 1989): 
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Through several iterations, the ‘solve-for’ vector is updated using the variate of the 𝑖𝑖th iteration (Δ𝐗𝐗𝑖𝑖) 
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Table 1. Functionality requirements of the DSODS (Song et al. 2016)

Functionality 
Code

Description

ODF-0 Read and write information from/to text file

ODF-0.1
Printing out configuration and Result of OD as a 
Text File

ODF-0.2
Loading configuration and result of OD from a Text 
File

ODF-1 Effectivity check of observation data
ODF-2 Edit observation data

ODF-2.1 Specific editing function based on user command
ODF-2.2 Iterative editing function based on residual

ODF-3 Determinate state vector at all mission phases

ODF-3.1
Initial orbit determination (IOD) right after the 
Launch

ODF-3.2 Orbit determination at the Earth parking
ODF-3.3 Trajectory determination during the lunar transfer
ODF-3.4 Orbit determination at the Moon

ODF-7
Autonomous function support for OD (dependent 
to mission phases)
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‘solve-for’ vector, n is the dimension of the ‘solve-for’ vector, 
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method, that uses 1st order approximations under the 

assumption of differentiability of the system model and the 

suitability of the a priori states. Through several iterations, 

the ‘solve-for’ vector is updated using the variate of the ith 

iteration (ΔXi) (Long et al. 1989):
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where 𝐇𝐇 is the Jacobian matrix, a partial derivative of the system model, that is numerically evaluated by
that central differencing method in the OD module.

The convergence criterion is the cost reduction ratio (γ):

γ = 𝐼𝐼𝑖𝑖 − 𝐼𝐼𝑖𝑖−1
𝐼𝐼𝑖𝑖

 (5) 

The estimation sequence stops if the ratio becomes less than a small tolerance (𝜀𝜀), set as 10−3 by default,
and also terminates when the number of iterations reach a designated maximum number.

The covariance matrix (P), which corresponds to the precision of the estimation, is evaluated after
convergence by the following expression:

𝐏𝐏Δ𝐗𝐗 = (𝐇𝐇T𝐖𝐖𝐖𝐖 + 𝐏𝐏Δ𝐗𝐗0−1 )−1 (6) 

Data editing is done to reject any abnormal observation data that diminishes the accuracy of the solution
from the orbit determination process. There are two types of data editors in the developed software. The first
one is the specific editor, where the user designates a specific type, site and date of the observation. It is
useful when the user has the empirical skills and when there are known problems with some observatories or
dates. Another editor is the iterative editor, which is automatically executes every iteration. The iterative
editor rejects the observation data if the data does not meet the conditions that are calculated by the
measurement residuals and the states of the iteration (Long et al. 1989).

√𝑤𝑤𝑗𝑗|Δ𝑦𝑦𝑗𝑗| > 𝑘𝑘 × 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖 + 𝐾𝐾 (7) 

In the above expression, 𝑤𝑤𝑗𝑗 is a weight component corresponding to the j-th observation data, Δ𝑦𝑦𝑗𝑗 is a j-th
measurement residual, k is a constant multiplier and K is an additive constant. The predicted root mean
square, PRMS, is evaluated by following form.

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖 = √1
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Fig. 2 is an example of iterative editing using the weighted residual method, where two abnormal
observation data points, which are circumscribed, are edited.

All information about the orbit determination including the dynamic model, tolerance, maximum
iteration number and the estimated result are saved in the orbit determination data handler. The handler can
generate a residual plot, compare the estimation results to the ephemeris and print the information to an
ASCII file. The handler also can read the output file, load the configuration and the result from the file and
utilize this information for the next orbit determination. Fig. 3 shows the residual plot and the output ASCII
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where 𝐇𝐇 is the Jacobian matrix, a partial derivative of the system model, that is numerically evaluated by
that central differencing method in the OD module.

The convergence criterion is the cost reduction ratio (γ):
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The estimation sequence stops if the ratio becomes less than a small tolerance (𝜀𝜀), set as 10−3 by default,
and also terminates when the number of iterations reach a designated maximum number.

The covariance matrix (P), which corresponds to the precision of the estimation, is evaluated after
convergence by the following expression:

𝐏𝐏Δ𝐗𝐗 = (𝐇𝐇T𝐖𝐖𝐖𝐖 + 𝐏𝐏Δ𝐗𝐗0−1 )−1 (6) 

Data editing is done to reject any abnormal observation data that diminishes the accuracy of the solution
from the orbit determination process. There are two types of data editors in the developed software. The first
one is the specific editor, where the user designates a specific type, site and date of the observation. It is
useful when the user has the empirical skills and when there are known problems with some observatories or
dates. Another editor is the iterative editor, which is automatically executes every iteration. The iterative
editor rejects the observation data if the data does not meet the conditions that are calculated by the
measurement residuals and the states of the iteration (Long et al. 1989).

√𝑤𝑤𝑗𝑗|Δ𝑦𝑦𝑗𝑗| > 𝑘𝑘 × 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖 + 𝐾𝐾 (7) 

In the above expression, 𝑤𝑤𝑗𝑗 is a weight component corresponding to the j-th observation data, Δ𝑦𝑦𝑗𝑗 is a j-th
measurement residual, k is a constant multiplier and K is an additive constant. The predicted root mean
square, PRMS, is evaluated by following form.
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Fig. 2 is an example of iterative editing using the weighted residual method, where two abnormal
observation data points, which are circumscribed, are edited.

All information about the orbit determination including the dynamic model, tolerance, maximum
iteration number and the estimated result are saved in the orbit determination data handler. The handler can
generate a residual plot, compare the estimation results to the ephemeris and print the information to an
ASCII file. The handler also can read the output file, load the configuration and the result from the file and
utilize this information for the next orbit determination. Fig. 3 shows the residual plot and the output ASCII
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where 𝐇𝐇 is the Jacobian matrix, a partial derivative of the system model, that is numerically evaluated by
that central differencing method in the OD module.

The convergence criterion is the cost reduction ratio (γ):
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The estimation sequence stops if the ratio becomes less than a small tolerance (𝜀𝜀), set as 10−3 by default,
and also terminates when the number of iterations reach a designated maximum number.

The covariance matrix (P), which corresponds to the precision of the estimation, is evaluated after
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Data editing is done to reject any abnormal observation data that diminishes the accuracy of the solution
from the orbit determination process. There are two types of data editors in the developed software. The first
one is the specific editor, where the user designates a specific type, site and date of the observation. It is
useful when the user has the empirical skills and when there are known problems with some observatories or
dates. Another editor is the iterative editor, which is automatically executes every iteration. The iterative
editor rejects the observation data if the data does not meet the conditions that are calculated by the
measurement residuals and the states of the iteration (Long et al. 1989).

√𝑤𝑤𝑗𝑗|Δ𝑦𝑦𝑗𝑗| > 𝑘𝑘 × 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖 + 𝐾𝐾 (7) 

In the above expression, 𝑤𝑤𝑗𝑗 is a weight component corresponding to the j-th observation data, Δ𝑦𝑦𝑗𝑗 is a j-th
measurement residual, k is a constant multiplier and K is an additive constant. The predicted root mean
square, PRMS, is evaluated by following form.
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Fig. 2 is an example of iterative editing using the weighted residual method, where two abnormal
observation data points, which are circumscribed, are edited.

All information about the orbit determination including the dynamic model, tolerance, maximum
iteration number and the estimated result are saved in the orbit determination data handler. The handler can
generate a residual plot, compare the estimation results to the ephemeris and print the information to an
ASCII file. The handler also can read the output file, load the configuration and the result from the file and
utilize this information for the next orbit determination. Fig. 3 shows the residual plot and the output ASCII

� (6)

Data editing is done to reject any abnormal observation 

data that diminishes the accuracy of the solution from 

the orbit determination process. There are two types of 

data editors in the developed software. The first one is 

the specific editor, where the user designates a specific 

type, site and date of the observation. It is useful when the 

user has the empirical skills and when there are known 

problems with some observatories or dates. Another editor 

is the iterative editor, which is automatically executes every 

iteration. The iterative editor rejects the observation data 

if the data does not meet the conditions that are calculated 

by the measurement residuals and the states of the iteration 

(Long et al. 1989).

	

4 

Δ𝐗𝐗𝐢𝐢
^
= (𝐇𝐇T𝐖𝐖𝐖𝐖 + 𝐏𝐏𝚫𝚫𝐗𝐗0

−1 )
−1

(𝐇𝐇𝑖𝑖
T𝐖𝐖Δ𝐘𝐘𝑖𝑖 + 𝐏𝐏𝚫𝚫𝐗𝐗0−1 (𝐗𝐗

^
𝑖𝑖−1 − 𝐗𝐗0))

𝐗𝐗
^
𝑖𝑖 = 𝑿𝑿

^
𝑖𝑖−1 + Δ𝑿𝑿

^
𝑖𝑖 

(4) 

where 𝐇𝐇 is the Jacobian matrix, a partial derivative of the system model, that is numerically evaluated by
that central differencing method in the OD module.
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The estimation sequence stops if the ratio becomes less than a small tolerance (𝜀𝜀), set as 10−3 by default,
and also terminates when the number of iterations reach a designated maximum number.

The covariance matrix (P), which corresponds to the precision of the estimation, is evaluated after
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Data editing is done to reject any abnormal observation data that diminishes the accuracy of the solution
from the orbit determination process. There are two types of data editors in the developed software. The first
one is the specific editor, where the user designates a specific type, site and date of the observation. It is
useful when the user has the empirical skills and when there are known problems with some observatories or
dates. Another editor is the iterative editor, which is automatically executes every iteration. The iterative
editor rejects the observation data if the data does not meet the conditions that are calculated by the
measurement residuals and the states of the iteration (Long et al. 1989).
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In the above expression, 𝑤𝑤𝑗𝑗 is a weight component corresponding to the j-th observation data, Δ𝑦𝑦𝑗𝑗 is a j-th
measurement residual, k is a constant multiplier and K is an additive constant. The predicted root mean
square, PRMS, is evaluated by following form.
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Fig. 2 is an example of iterative editing using the weighted residual method, where two abnormal
observation data points, which are circumscribed, are edited.

All information about the orbit determination including the dynamic model, tolerance, maximum
iteration number and the estimated result are saved in the orbit determination data handler. The handler can
generate a residual plot, compare the estimation results to the ephemeris and print the information to an
ASCII file. The handler also can read the output file, load the configuration and the result from the file and
utilize this information for the next orbit determination. Fig. 3 shows the residual plot and the output ASCII
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where 𝐇𝐇 is the Jacobian matrix, a partial derivative of the system model, that is numerically evaluated by
that central differencing method in the OD module.
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The estimation sequence stops if the ratio becomes less than a small tolerance (𝜀𝜀), set as 10−3 by default,
and also terminates when the number of iterations reach a designated maximum number.
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Data editing is done to reject any abnormal observation data that diminishes the accuracy of the solution
from the orbit determination process. There are two types of data editors in the developed software. The first
one is the specific editor, where the user designates a specific type, site and date of the observation. It is
useful when the user has the empirical skills and when there are known problems with some observatories or
dates. Another editor is the iterative editor, which is automatically executes every iteration. The iterative
editor rejects the observation data if the data does not meet the conditions that are calculated by the
measurement residuals and the states of the iteration (Long et al. 1989).
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measurement residual, k is a constant multiplier and K is an additive constant. The predicted root mean
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Fig. 2 is an example of iterative editing using the weighted residual method, where two abnormal
observation data points, which are circumscribed, are edited.
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iteration number and the estimated result are saved in the orbit determination data handler. The handler can
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Fig. 2 is an example of iterative editing using the weighted residual method, where two abnormal
observation data points, which are circumscribed, are edited.

All information about the orbit determination including the dynamic model, tolerance, maximum
iteration number and the estimated result are saved in the orbit determination data handler. The handler can
generate a residual plot, compare the estimation results to the ephemeris and print the information to an
ASCII file. The handler also can read the output file, load the configuration and the result from the file and
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Fig. 2 is an example of iterative editing using the weighted 

residual method, where two abnormal observation data 

points, which are circumscribed, are edited.

All information about the orbit determination including 

the dynamic model, tolerance, maximum iteration number 

and the estimated result are saved in the orbit determination 

data handler. The handler can generate a residual plot, 

compare the estimation results to the ephemeris and print 

the information to an ASCII file. The handler also can read the 

output file, load the configuration and the result from the file 

and utilize this information for the next orbit determination. 

Fig. 3 shows the residual plot and the output ASCII file.

3. DEMONSTRATION OF ROBUSTNESS

Software verification is a process to demonstrate that 

the program satisfies its requirement. There are various 

methods for verification such as mathematical analyses, 

reliability tests and process assurance (Sommerville 2011). 

In this section, a stress test, a test in an environment outside 

the normal operation limit, is conducted to demonstrate the 

robustness of the DSODS using Lunar Prospector tracking 

data. The Lunar Prospector was a lunar exploration mission 

to analyze the moon’s gravity and magnetic field, launched 

in 1998 (Binder 1998). The mission data is employed for 

the demonstration process as it orbited at an altitude of 

100 km above the moon, just as the KPLO. Additionally, 

Fig. 2. An example of iterative editing using weighted residuals which 
removes abnormal observation data from the orbit determination 
process. The two abnormal observation data points marked within the 
circle are excluded.
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various datasets such as DSN tracking data, ephemeris 

and command log are available from the NASA PDS, which 

is an archive of data products from past NASA planetary 

missions.

3.1 Configuration

The orbit determination environment including the force 

model, the propagator options, the a priori covariance matrix 

and the weights for the measurement, is compiled in Table 

2. The force model and the propagator are implemented 

in the GMAT, and the measurement weight is assigned 

based on the nominal noise level of the S-band tracking 

data (Chang 2015). The ‘solve-for’ parameters are three-

dimensional position and velocity vectors, and the range 

and Doppler biases of each tracking station. Fig. 4 shows the 

Fig. 3. Residual plot (a) and output ASCII file (b) obtained from the orbit determination data handler.
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8 hrs' tracking data, un-ramped two-way range and Doppler 

data provided by the 2 DSN stations, the DSS-24 (Goldstone, 

USA) and the DSS-42 (Canberra, Australia), also the DSS-

27 (Goldstone, USA) provides only the un-ramped two-way 

Doppler data. The NASA PDS1 ephemeris is considered as 

the true state, with an accuracy of approximately 1 km in 

position and 1 m/s in velocity2.

A set of a priori state vectors are generated by adding 

pseudo Gaussian errors to the true states, where the errors 

correspond to an a priori covariance matrix (Table 2). The 

a priori error is set as 1 km for position and 0.001 km/s 

for velocity, in accordance to the ephemeris accuracy of 

the Lunar Prospector. Note that the a priori error of biases 

are ignored, i.e., a priori biases are fixed as zero since the 

robustness is checked only for the position and velocity 

vector of the spacecraft. The orbit solutions are evaluated 

using the generated a priori states set of 20 state vectors, and 

are statistically analyzed.

3.2 Results

Fig. 5 shows the statistical covariance ellipsoid and the 

distribution of the solutions, where the major axis of the 

ellipsoid is normal to the direction towards the Earth. Since 

the tracking data, range and Doppler, is measured in the 

radial direction, uncertainty in the radial direction is much 

smaller than the along-track and cross-track directions. The 

solutions are distributed with a three-dimensional standard 

deviation of 18.66 m, which satisfies the mission requirement 

of the KPLO. The precision, however, is predicted as ~ 4 

1	 http://pds-geosciences.wustl.edu/lunar/prospectorcd/

2	 ��https://pds.nasa.gov/ds-view/pds/viewDataset.jsp?dsid=LP-L-6-EPHEMERIS-V1.0

m by the estimated covariance matrix (as mentioned in 

Section 2.3), which includes the orbit solutions within a 5σ 

ellipsoid. Since the statistical consistence of the developed 

software has already been confirmed by that the estimated 

covariance matrix and the distribution of the actual solutions 

are consistent under the simplified environment (Lee et 

al. 2016), the causes that under-estimate the covariance 

matrix in comparison to the solution distribution in this 

study are analyzed considering the characteristics of the 

actual system. The first cause is the process noise, which 

denotes the unmodeled phenomena in the dynamic and 

measurement models. The covariance matrix evaluated by 

a batch type estimator does not contain process noise, but 

instead a a correlation matrix, which presents uncertainty of 

system-related parameters, ‘consider parameter’. The system 

Fig. 4. Configuration of the DSN tracking data from the Lunar Prospector 
at 1998/11/25 from 12 am to 8 pm. Two DSN stations provide both un-
ramped two-way range and Doppler data, and a single station provides 
only the Doppler data. 

Fig. 5. The statistical covariance ellipsoid and the solution distributions. 
The major axis of the ellipsoid is normal to the direction towards the Earth 
(red arrow), and the statistical standard deviation is about 18 m which 
satisfies the mission requirements of the KPLO.

Table 2. Simulation environment for demonstration using Lunar 
Prospector tracking data

Property Value

Dynamic 
model

(GMAT)

Force model

GRAIL165 (GL0660B) 100×100
3rd body effect of Sun, Earth, 

Jupiter, Saturn
Solar Radiation Pressure

Relativistic correction
Propagator Runge-Kutta 89

Estimation

Convergence Criteria ΔCost/Cost < 10-3

Parameters
Position and velocity vectors of 
spacecraft, range and Doppler 

biases of tracking stations

Measurement 
weight

Range (m) 2
Doppler (mm/s) 1

A priori 
uncertainty 
(covariance 

matrix)

Position (km) 1

Velocity (km/s) 0.001
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model parameters, such as the geopotential coefficients 

and the solar radiation coefficients, can be used as the 

consider parameter, and their uncertainties can be modeled 

in the correlation matrix. In this analysis, however, no 

consider parameter is employed, resulting in an additional 

estimation error. The other cause is the inaccuracy of the a 
priori covariance and weight matrices. Since the uncertainty 

of a priori states and the noise level of the tracking data 

are not exactly determined, the covariance matrix has a 

corresponding error. Furthermore, the truncation error and 

round-off error also contribute to the estimation error.

Through the stress test, the robustness of the DSODS can 

be demonstrated within an a priori error margin of about 

1 km. Moreover, the estimated covariance matrix can be 

regarded as an indicator of the precision of the orbit solution.

4. VALIDATION

The orbit determination software should provide an 

orbit solution to appropriately operate the mission. In this 

section, the accuracy of the DSODS is validated using Lunar 

Prospector tracking data and two types of analyses: (1) 

solution comparison to the NASA PDS ephemeris and (2) 

overlap analysis. Note that the tracking data and environment 

for validation are same as the demonstration procedure.

4.1 Solution Comparison

A comparison between solutions achieved through different 

systems is one of the methods to assess the accuracy of an 

orbit solution (Schutz et al. 2004). To confirm whether the 

developed software can prove suitably reliable for a mission, 

the orbit solution is evaluated using Lunar Prospector tracking 

data propagated over 24 hr, and is compared to the NASA PDS 

ephemeris. 

In this study, an orbit determination is executed once 

in a day over the lunar orbit using one-day long tracking 

data, range and Doppler data, since the mission operation 

concept of the KPLO is not fixed yet. The arc length is 24 hr 

on November 25, 1998, using the tracking data provided by 

several DSN stations, as configured in Fig. 6. Un-ramped 

two-way range and Doppler data was provided by 5 DSN 

stations, DSS-16 in Goldstone, USA, and DSS-24, DSS-42, 

DSS-61 and DSS-66 in Madrid, Spain, with additional un-

ramped two-way Doppler data supplied by a single DSN 

station, DSS-27 in Goldstone, USA.

After the orbit determination, the standard deviations 

of the residuals are 4.28 m for range and 1.13 mm/s for 

Doppler, which correspond to the noise level of the S-band 

tracking data (Fig. 7). The system model however, should 

be improved since the residuals are not completely random 

distributions, i.e., include the existence of a systematic error. 

The position difference of the orbit solution with respect 

to the NASA PDS ephemeris is presented in Fig. 8. The 

variation by axis is conspicuous in the orbital frame, i.e., 

radial-transverse-normal frame, although not in the original 

inertial frame. The radial difference is the smallest, while the 

transverse-normal frame differences show an increase from 

2 to 4 times after 24 hr. This is also due to the characteristics 

Fig. 6. Configuration of a day long tracking data of Lunar Prospector on 1998/11/25. Five DSN 
stations provide the both un-ramped two-way range and Doppler tracking data, and a single 
station provides only the Doppler data.
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of the tracking system which measure the range and 

Doppler in the radial direction. Note that although the 

difference accumulates with time due to the nonlinearity 

of the dynamic system, the RMS of the difference over 24 

hr is 39.51 m which is significantly lower than the orbit 

accuracy of the Lunar Prospector (1 km). Through solution 

comparison, the performance of the DSODS is deemed 

appropriate to support the KPLO.

4.2 Overlap Analysis

Overlapping is another technique to measure the accuracy 

of the orbit solution. The differences between separated 

arcs that share some part of tracking data are evaluated and 

considered indicators of orbit accuracy (Schutz et al. 2004). In 

this analysis, an 8 hrs' arc is designated and neighboring arcs 

are separated with 6 hrs' interval, that share 2 hr of tracking 

data. The tracking data used for the overlap analysis is the 

data of November 25, 1998, same as that used in the previous 

section.

Fig. 9 shows the residuals of each arc, where two types of 

boxes, solid and dash, represent overlapped tracking data. 

The standard deviations of the range residuals are 1.40 m, 3.64 

m and 1.93 m for each arc, and that of Doppler are 0.33 mm/s, 

0.43 mm/s and 0.92 mm/s (Table 3). The residuals correspond 

to the nominal noise level of the S-band tracking data, 

signifying that the orbit solution is well converged by iterative 

process. However, the difference between the residuals of arcs 

is at least double due to a systematic error which needs further 

improvement. Fig. 10 is the position variation between the 

overlapped arcs with RMS position differences of 36.68 m and 

50.14 m, with most differences concentrated in the transverse 

and normal directions. These differences correspond to the 

results from the previous section, confirming the consistency 

of the software and validating the accuracy of the DSODS to 

several tens of meters.

In addition, Fig. 11 presents the position difference of each 

arc compared to the NASA PDS ephemeris, with the RMS 

differences of 54.41 m, 20.23 and 63.55 m, respectively. These 

differences are also of the same order as the previous section. 

Here too the differences in the radial direction are minimum 

and almost same for all arcs, while those in the transverse-

normal directions have considerable variations between arcs. 

The discordance between the residual level and the position 

difference is interpreted as a systematic property caused by 

the shortage of information in the transverse and normal 

directions due to the characteristics of the tracking system.

Fig. 8. Position difference of the estimation with respect to the NASA PDS ephemeris in the inertial frame (left) and orbital (radial-transverse-normal) 
frame (right). The RMS for 24 hr is 39.51 m.

Fig. 7. The residuals of the November 25, 1998 tracking data, after the 
orbit determination. The standard deviations of the residuals are 4.28 m 
for range and 1.13 mm/s for Doppler.
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5. SUMMARY

In this study, a DSODS is developed and is validated 

using Lunar Prospector tracking data. The DSODS consists 

of several submodules where the modules interact with 

each other. The OP module includes a force model and 

orbit propagator, that plays the role of a dynamic model 

in the orbit determination process. A GMAT is employed 

as an OP module for the DSODS. A DS module provides a 

DSN tracking data model, including hardware properties 

and some error sources. The OD module uses a batch type 

weighted least squares estimator for evaluation, and other 

subroutines such as specific/iterative editors and a data 

handler for further analysis.

A stress test is conducted to demonstrate the reliability 

of the DSODS. Here a set of a priori states and 8 hrs' DSN 

tracking data from November 25, 1998, is applied to the orbit 

determination. The orbit solutions are distributed within a 

standard deviation of about 18 m, which are different from 

the estimated covariance matrix. The possible causes for 

these differences were determined as follows: (1) the number 

of solutions were not enough for a statistical analysis, (2) the 

process noise and consider parameters were not accounted 

for, and (3) the uncertainty of the a priori covariance and the 

weight matrices contribute towards the estimation error. 

Despite these differences, the robustness of the DSODS can 

be determined within an a priori error as evidenced by the 

stress test.

Fig. 9. Residual plots of overlapping arcs on November 25, 1998. Each plot shows the residuals from (a) 12 am to 8 am, (b) 6 am to 2 pm, (c) 12 pm to 8 pm, 
respectively. The two boxes, solid and dashed, indicate the overlapped tracking data.

(a)

(c)

(b)

Table 3. Standard deviation of the residuals in each arc for overlap 
analysis

Arc 1 Arc 2 Arc 3
Range (m) 1.40 3.64 1.93

Doppler (mm/s) 0.33 0.43 0.92
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A solution comparison and an overlap analysis are common 

methods to examine the quality of a solution. For the solution 

comparison, 24 hrs' DSN tracking data is utilized and the 

resulting solution is compared to the NASA PDS ephemeris. 

The RMS position difference is ~ 40 m over 24 hr, which is 

within the orbit resolution limit of the Lunar Prospector (1 km), 

with the highest accuracy in achieved in the radial direction 

due to the characteristics of the tracking system. Furthermore, 

the measurement residual is reduced to several meters for 

range and about 1 mm/s for Doppler, corresponding to the 

nominal noise level of the S-band tracking data. Tracking 

data from the same day is also used for the overlap analysis. 

The arcs for the analysis are configured to be 8 hr long, and 

adjacent arcs are separated by 6 hr with 2 hrs’ overlap. The 

standard deviations of the residuals and Doppler are 1 m and 

0.1 mm/s levels ,respectively for all arcs. The RMS position 

differences compared to the NASA PDS ephemeris and those 

between overlapping sections are of the order of tens of meters.

These analyses justify that the DSODS is properly 

developed, and satisfies the mission requirements of 

the KPLO. It is also applicable to support other deep 

space missions, such as lunar landing missions and Mars 

explorations, since it is a domestic software that can be 

continuously updated and improved. This study however, 

was conducted for specific cases where 24 hrs’ tracking data 

is available and the tracking data distributes normally. The 

DSODS should also be validated under abnormal conditions 

in the future. In addition, the validation and analysis are 

performed only for a lunar orbit whereas an actual spacecraft 

would be subjected to various mission phases such as an 

Fig. 11. Position differences of the orbit solutions with respect to the NASA PDS ephemeris data in the inertial frame (left) and the orbital frame (right). 
The RMS differences between each arc are 54.41 m, 20.23 m and 63.55 m, respectively.

Fig. 10. Position differences between the overlapped arcs in the inertial frame (left) and the orbital frame (right). RMS position differences between the 
overlapped arcs are 36.68 m and 50.14 m, respectively.
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Earth parking orbit, a trans-lunar orbit and a lunar insertion 

orbit. Validation is going to be conducted for all mission 

phases to check the operational feasibility. Current progress 

is being made to configure a simulator system consisting 

of three parts: a DSN tracking data simulator, an orbit 

determination part and an orbit prediction part. Each part 

will operate independently while communicating with each 

other. Further simulation and analysis will be performed 

using such a simulator system.
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