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Communication, Ocean And Meteorological Satellite (COMS) Meteorological Imager (MI) images are processed for 
radiometric and geometric correction from raw image data. When intermediate image data are matched and compared with 
reference landmark images in the geometrical correction process, various techniques for edge detection can be applied. It is 
essential to have a precise and correct edged image in this process, since its matching with the reference is directly related 
to the accuracy of the ground station output images. An edge detection method based on neural networks is applied for the 
ground processing of MI images for obtaining sharp edges in the correct positions. The simulation results are analyzed and 
characterized by comparing them with the results of conventional methods, such as Sobel and Canny filters. 
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1. INTRODUCTION

On receiving image data obtained from Communication, 

Ocean And Meteorological Satellite (COMS) meteorological 

imager (MI), the ground station initiates the process of 

radiometric and geometric correction. When performing the 

radiometric process, by applying gains and offsets to their 

pixel values, the raw image data can be transformed into a 

1A image. Since the attitude and orbit of the satellite vary 

continuously and are thus not consistent during imaging, 

the 1A image contains some geometrical distortion. To 

compensate for this error, the geometric correction process 

is then applied, which results in a 1B image.

During geometric correction, the 1A image is compared 

and matched with a reference image. Convolutional matching 

shows the extent of location errors in the image. The reference 

images, obtained from previous imaging, are geometrically 

corrected and are comprised of shore line edges. These 

reference images are called landmark images; their locations 

are well-known and the image size is usually small (128×64). 

It is, therefore, necessary for the 1A image to be edge-filtered 

to enable precise matching with landmarks. Conventionally a 

Sobel or Canny filter is used for this process. Another solution 

for edge filtering is a neural network approach because it is 

capable of adaptive learning and non-linear mapping (Lu et 

al. 2011). 

A simple Spiking neural network (SNN) is known to be 

effective for simulating a visual system since it has a modeling 

structure that can describe the operation of the human 

visual system (Wu et al. 2007). It allows for rapid decoding of 

sensor information, as in the visual system, where massive 

parallel processing is possible. This neural network can be 

easily adapted to perform edge detection by adjusting the 

weight matrices and thresholds. It also has greater potential 

than other methods for performance improvements through 

parameter optimization.

This paper introduces a neural network edge detection 

algorithm that can be applied to satellite meteorological 

images. Its effectiveness is demonstrated by processing 

COMS images. The results are then compared with those of 

conventional methods, and the influences on the accuracy 

of convolutional matched filtering are discussed.
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2. GEOMETRIC CORRECTION OF SATELLITE 
IMAGES

When the ground station receives data from COMS MI, 

the MI images are processed for radiometric and geometric 

correction. Fig. 1 depicts the overall processes used to create 

a 1B image from raw data.

After cloud removal, the 1A image is filtered for edge 

detection. The edged image is then compared and matched 

with the landmark, while positional errors at the pixel level 

of the 1A image are evaluated. These error vectors, along 

with the attitude and orbit information of the satellite, are 

delivered to the final stage of geometric correction, and the 

state vector is obtained as the result (NASA/GSFC 1996). 

The state vector allows for precision resampling of the 1A 

image and enables a 1B image output that is radiometrically 

and geometrically corrected. It also facilitates on-orbit 

sensor calibration when uploaded to the spacecraft and 

updates of the landmark database. 

The most essential process in geometric correction is 

landmark matching that estimates the positional errors 

in the 1A image with the cross correlation results of the 

edged image. The edge detection method involved should 

ensure accurate and precise extractions of edges since its 

performance greatly influences the overall quality of the 

final satellite image.  

3. CONVENTIONAL EDGE DETECTION 
METHODS

The most popular method for image edge detection is the 

Sobel filter, which is also used in the ground processing of 

COMS images. The Sobel filter is a kind of a discrete first-

order gradient detector that has two 3×3 convolution masks 

for detecting edges in the horizontal and vertical directions 

(Lu et al. 2011). After convolving the image with the integer-

valued masks to calculate derivatives in both directions, 

it outputs the pixel values of an edged image by summing 

or averaging the derivatives. The Sobel filter is a simple 

solution for edge detection with fewer computational 

demands, but due to a smoothing effect it provides edges 

that are several pixels wide (Lu et al. 2011). Wider edges 

can be a source of error in convolutional matching with 

landmarks. 

The Canny edge detector is another method that can 

replace the Sobel filter in this process. The algorithm, 

introduced in 1986 by J.F. Canny, comprises multiple stages 

to detect edges in images effectively. The Canny filter 

first applies Gaussian filtering to remove noise, but not as 

strongly as the normal smoothing filter, which may wipe out 

weak edges. It employs an edge detection operator, such as 

the Sobel operator, to locate the intensity gradients of the 

image. Non-maximum suppression is applied to thin out 

the extracted edges in the next stage. By using the double 

threshold, the spurious edges caused by noise and color 

variation are eventually suppressed. The final stage enables 

edge tracking using hysteresis and assesses the connectivity 

of all edges (Canny 1986). In this process, all the edges that 

are weak and not connected to a strong edge are eliminated. 

Although this follows the same process as the Sobel filter, 

but with larger computational loads; the resulting thinner, 

connected edges may provide better accuracy in shore line 

extraction of MI images.

4. NEURAL NETWORK-BASED EDGE DETECTION 
METHOD

SNN, used in this study for edge detection, was introduced 

relatively recently. Unlike other traditional neural network 

models, when all the necessary conditions are met, spiking 

models have spike outputs, rather than continuously varying 

outputs (Bogdanov et al. 2009). SNN has been demonstrated 

to be more plausible than other traditional neural networks, 

not only because of its biologically inspired parameters, 

but also because of its use of spatial-temporal information 

in computation. The temporal information can simply be 

expressed as the rate of pulsation in SNN (Long & Gupta 

2008).

Fig. 2 shows the structure of SNN used in this study. The 

input layer consists of the neurons that receive the input 

image; the input gray levels must be normalized to be between 

0 and 1. These input values are then delivered to the excitatory 
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and inhibitory synapses by the excitatory conductance gx,y
ex and 

the inhibitory conductance gx,y
ih , respectively, as expressed by 

Eqs. (1) and (2). 
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variation are eventually suppressed. The final stage enables edge tracking using hysteresis and assesses the 
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where τex and τih are the constants for excitatory and 

inhibitory synapses, respectively, and Ix,y is the normalized 

input from the image pixel. Neuron N
1
 that is located in 

the intermediate layer is updated by Eq. (3), using the 

connected weight matrices.
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equation (3), using the connected weight matrices. 
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where 𝑆𝑆𝑁𝑁1(𝑡𝑡) is the series of the output generated by neuron 𝑁𝑁1. The output layer is governed by equations 
(5) and (6) using the weights 𝑊𝑊𝑁𝑁1,⋯,𝑁𝑁4 and the input delivered from the intermediate layer. 
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where 𝑔𝑔𝑥𝑥′,𝑦𝑦′
𝑒𝑒𝑥𝑥  is the conductance that transmits the excitatory input to pixel (𝑥𝑥′, 𝑦𝑦′). It should be noted that 

there is no inhibitory input in the output layer. A spike is also generated in the layer when the output of 
neuron 𝑁𝑁𝑥𝑥′,𝑦𝑦′ exceeds the threshold value. The pulse rate over the given time interval determines the 
existence of edges in the image. Once any neuron generates a spike, it falls into a refractory state, in which 
no input is received. After a given period, the neuron is again able to integrate input to generate a spike. All 
the parameters used in the simulation are consistent with values known to be biologically meaningful (Wu et 
al. 2007), and the values of the weight matrices are evaluated through simulation.  
 
5. SIMULATION RESULTS 

 
The output of the proposed SNN filter was compared with that of the conventional Sobel and Canny 

filters. The famous “Lena” image was used in order to demonstrate the edge detection capability of all three 
methods, the results of which are displayed in Fig. 3. Gaussian low pass filtering was applied prior to edge 
detection in all three cases to reduce noise impact. The output of the Canny filter in Fig. 3 is shown in black 
and white due to the double threshold, and differs from that of the Sobel, displayed in grayscale. The SNN 
output is expressed in the form of a spike-pulse rate map of the output layer, where brighter lines mean more 
spikes than the given threshold. The network was set to iterate 100 times, which is also biologically 
consistent (Wu et al. 2007).  

As shown in Fig. 3, the output of SNN contains many edges, especially in medium-dark areas, whereas 
it has fewer components in relatively brighter regions. By taking advantage of this feature, the SNN filter 
may have an advantage in processing MI images, since all lands are relatively dark, and most of the brighter 
levels are clouds, which have to be removed. 
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equation (3), using the connected weight matrices. 
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where 𝑆𝑆𝑁𝑁1(𝑡𝑡) is the series of the output generated by neuron 𝑁𝑁1. The output layer is governed by equations 
(5) and (6) using the weights 𝑊𝑊𝑁𝑁1,⋯,𝑁𝑁4 and the input delivered from the intermediate layer. 

 
𝑔𝑔𝑒𝑒′,𝑦𝑦′

𝑒𝑒𝑒𝑒 (𝑡𝑡)
𝑑𝑑𝑡𝑡 =  − 1

𝜏𝜏𝑒𝑒𝑒𝑒
 𝑔𝑔𝑥𝑥′,𝑦𝑦′

𝑒𝑒𝑥𝑥 (𝑡𝑡) + (𝑊𝑊𝑁𝑁1 𝑆𝑆𝑁𝑁1(𝑡𝑡) + 𝑊𝑊𝑁𝑁2 𝑆𝑆𝑁𝑁2(𝑡𝑡) + 𝑊𝑊𝑁𝑁3 𝑆𝑆𝑁𝑁3(𝑡𝑡) + 𝑊𝑊𝑁𝑁4 𝑆𝑆𝑁𝑁4(𝑡𝑡))     (5) 
 

𝐶𝐶𝑚𝑚  
𝑑𝑑𝑑𝑑𝑒𝑒′,𝑦𝑦′(𝑡𝑡)

𝑑𝑑𝑡𝑡  =  𝑔𝑔𝑙𝑙  (𝐸𝐸𝑙𝑙 −  𝑣𝑣𝑥𝑥′,𝑦𝑦′(𝑡𝑡)) + 
𝑔𝑔𝑒𝑒′,𝑦𝑦′

𝑒𝑒𝑒𝑒 (𝑡𝑡)
𝐴𝐴𝑒𝑒𝑒𝑒

 (𝐸𝐸𝑒𝑒𝑥𝑥 −  𝑣𝑣𝑥𝑥′,𝑦𝑦′(𝑡𝑡))             (6) 
 

where 𝑔𝑔𝑥𝑥′,𝑦𝑦′
𝑒𝑒𝑥𝑥  is the conductance that transmits the excitatory input to pixel (𝑥𝑥′, 𝑦𝑦′). It should be noted that 

there is no inhibitory input in the output layer. A spike is also generated in the layer when the output of 
neuron 𝑁𝑁𝑥𝑥′,𝑦𝑦′ exceeds the threshold value. The pulse rate over the given time interval determines the 
existence of edges in the image. Once any neuron generates a spike, it falls into a refractory state, in which 
no input is received. After a given period, the neuron is again able to integrate input to generate a spike. All 
the parameters used in the simulation are consistent with values known to be biologically meaningful (Wu et 
al. 2007), and the values of the weight matrices are evaluated through simulation.  
 
5. SIMULATION RESULTS 

 
The output of the proposed SNN filter was compared with that of the conventional Sobel and Canny 

filters. The famous “Lena” image was used in order to demonstrate the edge detection capability of all three 
methods, the results of which are displayed in Fig. 3. Gaussian low pass filtering was applied prior to edge 
detection in all three cases to reduce noise impact. The output of the Canny filter in Fig. 3 is shown in black 
and white due to the double threshold, and differs from that of the Sobel, displayed in grayscale. The SNN 
output is expressed in the form of a spike-pulse rate map of the output layer, where brighter lines mean more 
spikes than the given threshold. The network was set to iterate 100 times, which is also biologically 
consistent (Wu et al. 2007).  

As shown in Fig. 3, the output of SNN contains many edges, especially in medium-dark areas, whereas 
it has fewer components in relatively brighter regions. By taking advantage of this feature, the SNN filter 
may have an advantage in processing MI images, since all lands are relatively dark, and most of the brighter 
levels are clouds, which have to be removed. 
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equation (3), using the connected weight matrices. 
 

𝐶𝐶𝑚𝑚  𝑑𝑑𝑑𝑑𝑁𝑁1(𝑡𝑡)
𝑑𝑑𝑡𝑡 =  𝑔𝑔𝑙𝑙 (𝐸𝐸𝑙𝑙 −  𝑣𝑣𝑁𝑁1(𝑡𝑡)) +  ∑ 𝑊𝑊𝑢𝑢𝑢𝑢∙𝑒𝑒𝑒𝑒𝑔𝑔𝑒𝑒,𝑦𝑦𝑒𝑒𝑒𝑒 (𝑡𝑡)

𝐴𝐴𝑒𝑒𝑒𝑒(𝑥𝑥,𝑦𝑦)∈𝑉𝑉𝑉𝑉  (𝐸𝐸𝑒𝑒𝑥𝑥 −  𝑣𝑣𝑁𝑁1(𝑡𝑡))  

+ ∑ 𝑊𝑊𝑢𝑢𝑢𝑢∙𝑖𝑖ℎ𝑔𝑔𝑒𝑒,𝑦𝑦𝑖𝑖ℎ (𝑡𝑡)
𝐴𝐴𝑖𝑖ℎ(𝑥𝑥,𝑦𝑦)∈𝑉𝑉𝑉𝑉  (𝐸𝐸𝑖𝑖ℎ −  𝑣𝑣𝑁𝑁1(𝑡𝑡))                           (3) 

 
where 𝐶𝐶𝑚𝑚 and 𝑔𝑔𝑙𝑙 are constants representing the capacitance and conductance of neuron 𝑁𝑁1, respectively. 
𝑣𝑣𝑁𝑁1(𝑡𝑡) is the output of neuron 𝑁𝑁1. 𝐸𝐸𝑙𝑙, 𝐸𝐸𝑒𝑒𝑥𝑥 and 𝐸𝐸𝑖𝑖ℎ are constants involved in the control of momentum, 
excitatory and inhibitory inputs, respectively. 𝐴𝐴𝑒𝑒𝑥𝑥 and 𝐴𝐴𝑖𝑖ℎ are constants that adjust the excitatory and 
inhibitory inputs of neurons, respectively. The connection weight W comprises a 3×3 matrix in which only 
the patterned boxes in Fig. 2 have nonzero values , and 𝑉𝑉𝑉𝑉 refers to the valid input region such that the input 
layer is limited to the same size (3×3), i.e., from (𝑥𝑥 − 1, 𝑦𝑦 − 1) to (𝑥𝑥 + 1, 𝑦𝑦 + 1). By equation (4), a spike 
is delivered to the output layer when the output of neuron 𝑁𝑁1 exceeds the threshold, 𝑣𝑣𝑡𝑡ℎ. 

 
if  𝑣𝑣𝑁𝑁1  ≥   𝑣𝑣𝑡𝑡ℎ, 𝑡𝑡ℎ𝑒𝑒𝑒𝑒 𝑆𝑆𝑁𝑁1(𝑡𝑡) = 1 
if  𝑣𝑣𝑁𝑁1  <   𝑣𝑣𝑡𝑡ℎ, 𝑡𝑡ℎ𝑒𝑒𝑒𝑒 𝑆𝑆𝑁𝑁1(𝑡𝑡) = 0                            (4) 

 
where 𝑆𝑆𝑁𝑁1(𝑡𝑡) is the series of the output generated by neuron 𝑁𝑁1. The output layer is governed by equations 
(5) and (6) using the weights 𝑊𝑊𝑁𝑁1,⋯,𝑁𝑁4 and the input delivered from the intermediate layer. 

 
𝑔𝑔𝑒𝑒′,𝑦𝑦′

𝑒𝑒𝑒𝑒 (𝑡𝑡)
𝑑𝑑𝑡𝑡 =  − 1

𝜏𝜏𝑒𝑒𝑒𝑒
 𝑔𝑔𝑥𝑥′,𝑦𝑦′

𝑒𝑒𝑥𝑥 (𝑡𝑡) + (𝑊𝑊𝑁𝑁1 𝑆𝑆𝑁𝑁1(𝑡𝑡) + 𝑊𝑊𝑁𝑁2 𝑆𝑆𝑁𝑁2(𝑡𝑡) + 𝑊𝑊𝑁𝑁3 𝑆𝑆𝑁𝑁3(𝑡𝑡) + 𝑊𝑊𝑁𝑁4 𝑆𝑆𝑁𝑁4(𝑡𝑡))     (5) 
 

𝐶𝐶𝑚𝑚  
𝑑𝑑𝑑𝑑𝑒𝑒′,𝑦𝑦′(𝑡𝑡)

𝑑𝑑𝑡𝑡  =  𝑔𝑔𝑙𝑙  (𝐸𝐸𝑙𝑙 −  𝑣𝑣𝑥𝑥′,𝑦𝑦′(𝑡𝑡)) + 
𝑔𝑔𝑒𝑒′,𝑦𝑦′

𝑒𝑒𝑒𝑒 (𝑡𝑡)
𝐴𝐴𝑒𝑒𝑒𝑒

 (𝐸𝐸𝑒𝑒𝑥𝑥 −  𝑣𝑣𝑥𝑥′,𝑦𝑦′(𝑡𝑡))             (6) 
 

where 𝑔𝑔𝑥𝑥′,𝑦𝑦′
𝑒𝑒𝑥𝑥  is the conductance that transmits the excitatory input to pixel (𝑥𝑥′, 𝑦𝑦′). It should be noted that 

there is no inhibitory input in the output layer. A spike is also generated in the layer when the output of 
neuron 𝑁𝑁𝑥𝑥′,𝑦𝑦′ exceeds the threshold value. The pulse rate over the given time interval determines the 
existence of edges in the image. Once any neuron generates a spike, it falls into a refractory state, in which 
no input is received. After a given period, the neuron is again able to integrate input to generate a spike. All 
the parameters used in the simulation are consistent with values known to be biologically meaningful (Wu et 
al. 2007), and the values of the weight matrices are evaluated through simulation.  
 
5. SIMULATION RESULTS 

 
The output of the proposed SNN filter was compared with that of the conventional Sobel and Canny 

filters. The famous “Lena” image was used in order to demonstrate the edge detection capability of all three 
methods, the results of which are displayed in Fig. 3. Gaussian low pass filtering was applied prior to edge 
detection in all three cases to reduce noise impact. The output of the Canny filter in Fig. 3 is shown in black 
and white due to the double threshold, and differs from that of the Sobel, displayed in grayscale. The SNN 
output is expressed in the form of a spike-pulse rate map of the output layer, where brighter lines mean more 
spikes than the given threshold. The network was set to iterate 100 times, which is also biologically 
consistent (Wu et al. 2007).  

As shown in Fig. 3, the output of SNN contains many edges, especially in medium-dark areas, whereas 
it has fewer components in relatively brighter regions. By taking advantage of this feature, the SNN filter 
may have an advantage in processing MI images, since all lands are relatively dark, and most of the brighter 
levels are clouds, which have to be removed. 
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equation (3), using the connected weight matrices. 
 

𝐶𝐶𝑚𝑚  𝑑𝑑𝑑𝑑𝑁𝑁1(𝑡𝑡)
𝑑𝑑𝑡𝑡 =  𝑔𝑔𝑙𝑙 (𝐸𝐸𝑙𝑙 −  𝑣𝑣𝑁𝑁1(𝑡𝑡)) +  ∑ 𝑊𝑊𝑢𝑢𝑢𝑢∙𝑒𝑒𝑒𝑒𝑔𝑔𝑒𝑒,𝑦𝑦𝑒𝑒𝑒𝑒 (𝑡𝑡)

𝐴𝐴𝑒𝑒𝑒𝑒(𝑥𝑥,𝑦𝑦)∈𝑉𝑉𝑉𝑉  (𝐸𝐸𝑒𝑒𝑥𝑥 −  𝑣𝑣𝑁𝑁1(𝑡𝑡))  

+ ∑ 𝑊𝑊𝑢𝑢𝑢𝑢∙𝑖𝑖ℎ𝑔𝑔𝑒𝑒,𝑦𝑦𝑖𝑖ℎ (𝑡𝑡)
𝐴𝐴𝑖𝑖ℎ(𝑥𝑥,𝑦𝑦)∈𝑉𝑉𝑉𝑉  (𝐸𝐸𝑖𝑖ℎ −  𝑣𝑣𝑁𝑁1(𝑡𝑡))                           (3) 

 
where 𝐶𝐶𝑚𝑚 and 𝑔𝑔𝑙𝑙 are constants representing the capacitance and conductance of neuron 𝑁𝑁1, respectively. 
𝑣𝑣𝑁𝑁1(𝑡𝑡) is the output of neuron 𝑁𝑁1. 𝐸𝐸𝑙𝑙, 𝐸𝐸𝑒𝑒𝑥𝑥 and 𝐸𝐸𝑖𝑖ℎ are constants involved in the control of momentum, 
excitatory and inhibitory inputs, respectively. 𝐴𝐴𝑒𝑒𝑥𝑥 and 𝐴𝐴𝑖𝑖ℎ are constants that adjust the excitatory and 
inhibitory inputs of neurons, respectively. The connection weight W comprises a 3×3 matrix in which only 
the patterned boxes in Fig. 2 have nonzero values , and 𝑉𝑉𝑉𝑉 refers to the valid input region such that the input 
layer is limited to the same size (3×3), i.e., from (𝑥𝑥 − 1, 𝑦𝑦 − 1) to (𝑥𝑥 + 1, 𝑦𝑦 + 1). By equation (4), a spike 
is delivered to the output layer when the output of neuron 𝑁𝑁1 exceeds the threshold, 𝑣𝑣𝑡𝑡ℎ. 

 
if  𝑣𝑣𝑁𝑁1  ≥   𝑣𝑣𝑡𝑡ℎ, 𝑡𝑡ℎ𝑒𝑒𝑒𝑒 𝑆𝑆𝑁𝑁1(𝑡𝑡) = 1 
if  𝑣𝑣𝑁𝑁1  <   𝑣𝑣𝑡𝑡ℎ, 𝑡𝑡ℎ𝑒𝑒𝑒𝑒 𝑆𝑆𝑁𝑁1(𝑡𝑡) = 0                            (4) 

 
where 𝑆𝑆𝑁𝑁1(𝑡𝑡) is the series of the output generated by neuron 𝑁𝑁1. The output layer is governed by equations 
(5) and (6) using the weights 𝑊𝑊𝑁𝑁1,⋯,𝑁𝑁4 and the input delivered from the intermediate layer. 

 
𝑔𝑔𝑒𝑒′,𝑦𝑦′

𝑒𝑒𝑒𝑒 (𝑡𝑡)
𝑑𝑑𝑡𝑡 =  − 1

𝜏𝜏𝑒𝑒𝑒𝑒
 𝑔𝑔𝑥𝑥′,𝑦𝑦′

𝑒𝑒𝑥𝑥 (𝑡𝑡) + (𝑊𝑊𝑁𝑁1 𝑆𝑆𝑁𝑁1(𝑡𝑡) + 𝑊𝑊𝑁𝑁2 𝑆𝑆𝑁𝑁2(𝑡𝑡) + 𝑊𝑊𝑁𝑁3 𝑆𝑆𝑁𝑁3(𝑡𝑡) + 𝑊𝑊𝑁𝑁4 𝑆𝑆𝑁𝑁4(𝑡𝑡))     (5) 
 

𝐶𝐶𝑚𝑚  
𝑑𝑑𝑑𝑑𝑒𝑒′,𝑦𝑦′(𝑡𝑡)

𝑑𝑑𝑡𝑡  =  𝑔𝑔𝑙𝑙  (𝐸𝐸𝑙𝑙 −  𝑣𝑣𝑥𝑥′,𝑦𝑦′(𝑡𝑡)) + 
𝑔𝑔𝑒𝑒′,𝑦𝑦′

𝑒𝑒𝑒𝑒 (𝑡𝑡)
𝐴𝐴𝑒𝑒𝑒𝑒

 (𝐸𝐸𝑒𝑒𝑥𝑥 −  𝑣𝑣𝑥𝑥′,𝑦𝑦′(𝑡𝑡))             (6) 
 

where 𝑔𝑔𝑥𝑥′,𝑦𝑦′
𝑒𝑒𝑥𝑥  is the conductance that transmits the excitatory input to pixel (𝑥𝑥′, 𝑦𝑦′). It should be noted that 

there is no inhibitory input in the output layer. A spike is also generated in the layer when the output of 
neuron 𝑁𝑁𝑥𝑥′,𝑦𝑦′ exceeds the threshold value. The pulse rate over the given time interval determines the 
existence of edges in the image. Once any neuron generates a spike, it falls into a refractory state, in which 
no input is received. After a given period, the neuron is again able to integrate input to generate a spike. All 
the parameters used in the simulation are consistent with values known to be biologically meaningful (Wu et 
al. 2007), and the values of the weight matrices are evaluated through simulation.  
 
5. SIMULATION RESULTS 

 
The output of the proposed SNN filter was compared with that of the conventional Sobel and Canny 

filters. The famous “Lena” image was used in order to demonstrate the edge detection capability of all three 
methods, the results of which are displayed in Fig. 3. Gaussian low pass filtering was applied prior to edge 
detection in all three cases to reduce noise impact. The output of the Canny filter in Fig. 3 is shown in black 
and white due to the double threshold, and differs from that of the Sobel, displayed in grayscale. The SNN 
output is expressed in the form of a spike-pulse rate map of the output layer, where brighter lines mean more 
spikes than the given threshold. The network was set to iterate 100 times, which is also biologically 
consistent (Wu et al. 2007).  

As shown in Fig. 3, the output of SNN contains many edges, especially in medium-dark areas, whereas 
it has fewer components in relatively brighter regions. By taking advantage of this feature, the SNN filter 
may have an advantage in processing MI images, since all lands are relatively dark, and most of the brighter 
levels are clouds, which have to be removed. 
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equation (3), using the connected weight matrices. 
 

𝐶𝐶𝑚𝑚  𝑑𝑑𝑑𝑑𝑁𝑁1(𝑡𝑡)
𝑑𝑑𝑡𝑡 =  𝑔𝑔𝑙𝑙 (𝐸𝐸𝑙𝑙 −  𝑣𝑣𝑁𝑁1(𝑡𝑡)) +  ∑ 𝑊𝑊𝑢𝑢𝑢𝑢∙𝑒𝑒𝑒𝑒𝑔𝑔𝑒𝑒,𝑦𝑦𝑒𝑒𝑒𝑒 (𝑡𝑡)

𝐴𝐴𝑒𝑒𝑒𝑒(𝑥𝑥,𝑦𝑦)∈𝑉𝑉𝑉𝑉  (𝐸𝐸𝑒𝑒𝑥𝑥 −  𝑣𝑣𝑁𝑁1(𝑡𝑡))  

+ ∑ 𝑊𝑊𝑢𝑢𝑢𝑢∙𝑖𝑖ℎ𝑔𝑔𝑒𝑒,𝑦𝑦𝑖𝑖ℎ (𝑡𝑡)
𝐴𝐴𝑖𝑖ℎ(𝑥𝑥,𝑦𝑦)∈𝑉𝑉𝑉𝑉  (𝐸𝐸𝑖𝑖ℎ −  𝑣𝑣𝑁𝑁1(𝑡𝑡))                           (3) 

 
where 𝐶𝐶𝑚𝑚 and 𝑔𝑔𝑙𝑙 are constants representing the capacitance and conductance of neuron 𝑁𝑁1, respectively. 
𝑣𝑣𝑁𝑁1(𝑡𝑡) is the output of neuron 𝑁𝑁1. 𝐸𝐸𝑙𝑙, 𝐸𝐸𝑒𝑒𝑥𝑥 and 𝐸𝐸𝑖𝑖ℎ are constants involved in the control of momentum, 
excitatory and inhibitory inputs, respectively. 𝐴𝐴𝑒𝑒𝑥𝑥 and 𝐴𝐴𝑖𝑖ℎ are constants that adjust the excitatory and 
inhibitory inputs of neurons, respectively. The connection weight W comprises a 3×3 matrix in which only 
the patterned boxes in Fig. 2 have nonzero values , and 𝑉𝑉𝑉𝑉 refers to the valid input region such that the input 
layer is limited to the same size (3×3), i.e., from (𝑥𝑥 − 1, 𝑦𝑦 − 1) to (𝑥𝑥 + 1, 𝑦𝑦 + 1). By equation (4), a spike 
is delivered to the output layer when the output of neuron 𝑁𝑁1 exceeds the threshold, 𝑣𝑣𝑡𝑡ℎ. 

 
if  𝑣𝑣𝑁𝑁1  ≥   𝑣𝑣𝑡𝑡ℎ, 𝑡𝑡ℎ𝑒𝑒𝑒𝑒 𝑆𝑆𝑁𝑁1(𝑡𝑡) = 1 
if  𝑣𝑣𝑁𝑁1  <   𝑣𝑣𝑡𝑡ℎ, 𝑡𝑡ℎ𝑒𝑒𝑒𝑒 𝑆𝑆𝑁𝑁1(𝑡𝑡) = 0                            (4) 

 
where 𝑆𝑆𝑁𝑁1(𝑡𝑡) is the series of the output generated by neuron 𝑁𝑁1. The output layer is governed by equations 
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there is no inhibitory input in the output layer. A spike is also generated in the layer when the output of 
neuron 𝑁𝑁𝑥𝑥′,𝑦𝑦′ exceeds the threshold value. The pulse rate over the given time interval determines the 
existence of edges in the image. Once any neuron generates a spike, it falls into a refractory state, in which 
no input is received. After a given period, the neuron is again able to integrate input to generate a spike. All 
the parameters used in the simulation are consistent with values known to be biologically meaningful (Wu et 
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The output of the proposed SNN filter was compared with that of the conventional Sobel and Canny 

filters. The famous “Lena” image was used in order to demonstrate the edge detection capability of all three 
methods, the results of which are displayed in Fig. 3. Gaussian low pass filtering was applied prior to edge 
detection in all three cases to reduce noise impact. The output of the Canny filter in Fig. 3 is shown in black 
and white due to the double threshold, and differs from that of the Sobel, displayed in grayscale. The SNN 
output is expressed in the form of a spike-pulse rate map of the output layer, where brighter lines mean more 
spikes than the given threshold. The network was set to iterate 100 times, which is also biologically 
consistent (Wu et al. 2007).  

As shown in Fig. 3, the output of SNN contains many edges, especially in medium-dark areas, whereas 
it has fewer components in relatively brighter regions. By taking advantage of this feature, the SNN filter 
may have an advantage in processing MI images, since all lands are relatively dark, and most of the brighter 
levels are clouds, which have to be removed. 
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may have an advantage in processing MI images, since all lands are relatively dark, and most of the brighter 
levels are clouds, which have to be removed. 
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values known to be biologically meaningful (Wu et al. 2007), 

and the values of the weight matrices are evaluated through 

simulation. 

5. SIMULATION RESULTS

The output of the proposed SNN filter was compared 

with that of the conventional Sobel and Canny filters. The 

famous “Lena” image was used in order to demonstrate the 

edge detection capability of all three methods, the results 

of which are displayed in Fig. 3. Gaussian low pass filtering 

was applied prior to edge detection in all three cases to 

reduce noise impact. The output of the Canny filter in Fig. 3  

is shown in black and white due to the double threshold, 

and differs from that of the Sobel, displayed in grayscale. 

The SNN output is expressed in the form of a spike-pulse 

rate map of the output layer, where brighter lines mean 

more spikes than the given threshold. The network was set 

to iterate 100 times, which is also biologically consistent (Wu 

et al. 2007). 

As shown in Fig. 3, the output of SNN contains many 

edges, especially in medium-dark areas, whereas it has fewer 

components in relatively brighter regions. By taking advantage 

of this feature, the SNN filter may have an advantage in 

processing MI images, since all lands are relatively dark, 

and most of the brighter levels are clouds, which have to be 

removed.

Fig. 4 shows the results of edge detection for an MI 

image depicting Jeju Island, located southwest of the 

Korean Peninsula. The COMS MI image was transmitted 

in March 2013. Only the visible channel data were used 

for this simulation. Since MI images are huge in scale, it is 

rather effective to show the results in the actual landmark 

size (128×64) and then compare them. In Fig. 4, Jeju Island 

captured from the original MI image is shown in (a), the 

extracted landmark from (a) is shown in (b), and the edge 

detection results of all three methods are shown in (c), (d) 

and (e), respectively, after overlapping each one above the 

original image. In order to avoid distortion, Gaussian filtering 

was not applied in all three cases. It is easily observed that 

due to the smoothing effect, the Sobel filter generates wider 

edges as apparent in Fig. 4(c), which may be a drawback in 

the next matching process. The output of the Canny filter, 

Fig. 4(d), displays narrower edges than that of the Sobel, but 

contains extraneous components. Correct shore lines are 

seen in the SNN results, Fig. 4(e), but not all the edges are 

connected. 

Fig. 3. Comparison of the edge detection results.

(a) Lena Image (b) Sobel filter (c) Canny filter (d) SNN filter

Fig. 4. Comparison of the edge detection and matching results on Jeju Island.

(a) Original Image

(e) SNN filter (overlapped)

(b) Landmark

(f ) (b)&(c) matching result

(c) Sobel filter (overlapped)

(g) (b)&(d) matching result

(d) Canny filter (overlapped)

(h) (b)&(e) matching result
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After extracting the edges, frequency domain matching 

should be done in the COMS ground system to assess the 

positional error of the observed image. In this process, first, 

Fourier transform is applied to the edged image, along with 

the landmark. The frequency domain data of the edged 

image are then multiplied by the complex conjugate of the 

Fourier transformed landmark. The final matching result 

is obtained by applying inverse Fourier transform to the 

product. The matching results of each method are pictured 

in 2-D in Figs. 4(e)-4(g). The Sobel output has a broad peak 

because of its wider edges, whereas that of SNN shows the 

sharpest peak. This is more obvious in a three-dimensional 

graph, as shown in Fig. 5. The peak of the Sobel output is so 

broad that it may cause a higher rate of false alarms when 

the image is not clear. The Canny edge has a sharper peak 

than that of the Sobel filter, but it is not as good as that of 

SNN. The amplitude of the graphs in Fig. 5 should not be an 

issue, since it depends on the edged image pixel values that 

can be significantly changed by the quantization threshold 

applied.

Another simulation result, focusing on the Ulsan area of 

the Korean Peninsula, is shown in Fig. 6. The peak locations 

of each matching result are summarized in Table 1, with 

respect to the sampled areas in this simulation. Table 1 also 

includes the results for the two cases, Hong Kong and Osaka. 

As stated above, the landmarks used in this simulation were 

extracted from the same 1A image for verification purposes, 

so the correlation peak should appear at the center (63, 31). 

Due to the wider edges and unwanted components in their 

edged images, in some cases the Sobel and Canny filter 

outputs have slight positional errors as indicated in Table 1. 

These errors have a negative impact on the accuracy of the 

calculated state vector and of image resampling in the next 

stage. Unlike that of the other methods, the outputs of the 

SNN filter have a sharp peak at the correct position.

6. CONCLUSION

The proposed SNN edge filter yields similar or better 

performance than the conventional methods as demonstrated 

through the simulation. Although the connectivity of edges 

requires further refinement, when the positional errors 

of images are calculated, the thinner edges without the 

Fig. 6. Comparison of the edge detection and matching results on the Ulsan area.

(a) Original Image

(e) SNN filter (overlapped)

(b) Landmark

(f ) (b)&(c) matching result

(c) Sobel filter (overlapped)

(g) (b)&(d) matching result

(d) Canny filter (overlapped)

(h) (b)&(e) matching result

Fig. 5. Three-dimensional display of the matching results on Jeju Island.

(a) Sobel filter (b) Canny filter (c) SNN filter

Table 1. Peak locations of the matching results

Jeju Island Ulsan Hong Kong Osaka
Sobel filter 64, 30 (+1, -1) 63, 31 (0, 0) 63, 31 (0, 0) 63, 31 (0, 0)
Canny filter 64, 30 (+1, -1) 63, 31 (0, 0) 63, 30 (0, -1) 63, 31 (0, 0)
SNN filter 63, 31 (0, 0) 63, 31 (0, 0) 63, 31 (0, 0) 63, 31 (0, 0)



318http://dx.doi.org/10.5140/JASS.2016.33.4.313

J. Astron. Space Sci. 33(4), 313-318 (2016)

smoothing effect provided can be of help. It is also considered 

to have greater development potential because it can be 

further optimized by adjusting the weights and parameters 

and because its functions inside the algorithm can be 

extended, such as to cloud removal.

One major drawback when any neural network is im-

plemented using conventional computers is heavy compu-

tational loads due to the lack of massive parallelism. This is 

also true for the SNN filter. It uses all the multiple cores of the 

central processing unit (CPU), and its required running time 

is a hundred times that of other methods. The computational 

loads, however, are expected to be dramatically reduced 

if it is implemented using graphic processing unit (GPU) 

multi-cores. Once the ground processing software utilizes 

thousands of GPU cores, the SNN edge detector can be a 

better choice for improved performance.
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