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A planet revolving around binary star system  is a familiar system. Studies of these systems are important because they 
provide precise knowledge of planet formation and orbit evolution. In this study, a method to determine the evolution 
of an exoplanet revolving around a binary star system using different rates of stellar mass loss will be introduced. Using 
a hierarchical triple body system, in which the outer body can be moved with the center of mass of the inner binary star 
as a two-body problem, the long period evolution of the exoplanet orbit is determined depending on a Hamiltonian 
formulation. The model is simulated by numerical integrations of the Hamiltonian equations for the system over a long 
time. As a conclusion, the behavior of the planet orbital elements is quite affected  by the rate of the mass loss from the 
accompanying binary star.
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1. INTRODUCTION

In the last two decades, studies related to exoplanets 

have become an important field in modern astrophysics,  as 

observational instrumentations have become more sensitive 

and efficient for detecting signals related to this type of 

planet. While there are more than 100 cataloged exoplanets 

orbiting single star, the studies of such planets, including 

detection, characterization, and evolution, are still difficult. 

In addition, recent discoveries confirm the presence of an 

exoplanet around a binary companion (Borucki et al. 2010). 

Therefore, many stars in the solar neighborhood are a 

member of binary or multiple systems, which will force us to 

modify our knowledge regarding the dynamics of the planets 

in binary star systems. The dynamics of planets in binary 

systems are not easy to formulate because of the second star 

perturbations, which require researchers to neglect other 

perturbations like star radiation. In a hierarchical triple 

system, the motion of a planet will be constrained to revolve 

around the center of the binary star as a two-body problem.

Systems with multiple stars and planetary components 

draw the attention of researchers with their rich dynamics 

that can carry information about planetary formation and 

evolution.

Raghavan et al. (2010) found approximately half of the 

stars in the Sun neighborhood in multiple systems. At about 

a few tens of AU, these local systems have planets like those 

hosted by single stars, presenting interactions between stellar 

and planetary dynamics. Marzari et al. (2005) focused on the 

planetary systems subjected to planet–planet scattering around 

a binary star system. They studied the orbits of the unejected 

planets. Triple-body systems in which a planet revolves 

around a binary star system can be treated as hierarchical 

stable systems, and the motion can be described by two related 

systems. Each system describes a two-body problem: the 

motion of the inner binary stars and the motion of the planet 

with the center of mass of the inner system. The hierarchical 

system dynamics, especially the long period or secular terms, 

attracted the attention of researchers such as Harrington 

(1968), Heppenheimer (1978), Ford et al. (2000), Lee & Peale 
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(2003), Farago & Laskar (2010), Leung & Lee (2013), Naoz et 

al. (2013a, 2013b), Li et al. (2014), and Liu et al. (2015). As any 

gravitational perturbations in the binary system will strongly 

affect the motion of the planet, many studies introduced the 

dynamic stability of planets, especially the perturbation due to 

a secondary star (Boss 2006; Haghighipour 2006; Kley & Nelson 

2008; Thébault et al. 2009; Giuppone et al. 2011). Carvalho et 

al. (2016) introduced triple system secular dynamics assuming 

a center star like the Sun and a planet like Jupiter all perturbed 

by another brown dwarf star. 

In this work, the long period dynamics of the exoplanet 

will be formulated taking into consideration different rates 

of mass loss from the second inner companion using a 

hierarchical triple system to formulate the equations.

2. PROBLEM MODEL 

In the computations, we utilized a triple body system 

where an outer body or exoplanet of mass, m
2
, orbited the 

center of mass of two inner bodies or binary stars of mass 

(m
0
 and m

1
). Each system was described by two perturbed 

Keplerian bodies.

Using Jacobi coordinates, r⃗
1
 and r⃗

2
 is the position vector 

of m
1
 to m

0
, and r⃗

2
 is the position vector of m

2
 to the center of 

mass of the binary stars, respectively (see Fig. 1). In addition 

to well-known Keplerian elements, the semi-major axis aj, 

the eccentricity ej, the inclination ij, the right ascension of 

the ascending node Ωj, the argument of periastron ωj, and 

the mean anomaly Mj,  the true anomaly fj is used, where 

j=1, 2 for the inner orbit (j=1) and outer orbit (j=2). 

The Hamiltonian of the system is determined as (Harrington 

1968; Ford et al. 2000, 2004; Takeda et al. 2008):
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ℋ0 = − 𝛽𝛽0
2𝐿𝐿1

2 − 𝛽𝛽0
2𝐿𝐿2

2  

ℋ1 = −4𝛽𝛽2 (𝐿𝐿1
4

𝐿𝐿2
6 ) (𝑟𝑟1

𝑎𝑎1
)

2
(𝑎𝑎2

𝑟𝑟2
)

3
(3 cos2 𝜑𝜑 − 1) 

ℋ2 = −2𝛽𝛽3 (𝐿𝐿1
6

𝐿𝐿2
8 ) (𝑟𝑟1

𝑎𝑎1
)

3
(𝑎𝑎2

𝑟𝑟2
)

4
(5 cos3 𝜑𝜑 − 3 cos 𝜑𝜑) 

 
with 𝛽𝛽0 = ℊ𝑚𝑚0𝑚𝑚1

𝐿𝐿12

𝑎𝑎1
, 𝛽𝛽1 = ℊ𝑚𝑚2(𝑚𝑚0 + 𝑚𝑚1) 𝐿𝐿22

𝑎𝑎2
, 𝛽𝛽2 = ℊ

16
(𝑚𝑚0+𝑚𝑚1)7𝑚𝑚27

(𝑚𝑚0𝑚𝑚1)3(𝑚𝑚0+𝑚𝑚1+𝑚𝑚2)3  , 

𝛽𝛽2 = ℊ
4

(𝑚𝑚0+𝑚𝑚1)9𝑚𝑚2
9(𝑚𝑚0−𝑚𝑚1)

(𝑚𝑚0𝑚𝑚1)5(𝑚𝑚0+𝑚𝑚1+𝑚𝑚2)4,  and cos 𝜑𝜑 can be written using orbital elements as in Rahoma (2014) and 
Rahoma & Deleflie (2014) 
 

cos 𝜑𝜑 = ∑ 𝐴𝐴𝑖𝑖𝑖𝑖 cos(𝑓𝑓1  + 𝜔𝜔1 + 𝑖𝑖(𝑓𝑓2  + 𝜔𝜔2) + 𝑗𝑗(𝛺𝛺2 − 𝛺𝛺1))
1

𝑖𝑖,𝑗𝑗=−1
                             (3) 

 
where the non-vanishing coefficients are 

𝐴𝐴−1−1 = 1
4 (1 + cos 𝑖𝑖1 + cos 𝑖𝑖2 + cos 𝑖𝑖1 cos 𝑖𝑖2) 

𝐴𝐴−10 = 1
2 sin 𝑖𝑖1 sin 𝑖𝑖2 

𝐴𝐴−11 = 1
4 (1 − cos 𝑖𝑖1 − cos 𝑖𝑖2 + cos 𝑖𝑖1 cos 𝑖𝑖2) 

𝐴𝐴1−1 = 1
4 (1 + cos 𝑖𝑖1 − cos 𝑖𝑖2 − cos 𝑖𝑖1 cos 𝑖𝑖2) 

𝐴𝐴10 = − 1
2 sin 𝑖𝑖1 sin 𝑖𝑖2 

𝐴𝐴11 = 1
4 (1 − cos 𝑖𝑖1 + cos 𝑖𝑖2 − cos 𝑖𝑖1 cos 𝑖𝑖2) 

 

3 
 

where ℊ is the gravitational constant, 𝛼𝛼 = 𝑎𝑎1 𝑎𝑎2⁄ , 𝒫𝒫𝑆𝑆 are Legendre polynomials,  𝜑𝜑 is the angle between 
𝑟𝑟1 and 𝑟𝑟2,  and 

𝑀𝑀𝑠𝑠 = 𝑚𝑚0𝑚𝑚1𝑚𝑚2
𝑚𝑚0

𝑠𝑠−1 − (−𝑚𝑚1)𝑠𝑠−1

(𝑚𝑚0 + 𝑚𝑚1)𝑠𝑠  

 
The Delaunay’s elements are defined as: 𝑙𝑙𝑗𝑗  is the mean of the anomalies of object  , the 

arguments of periastron, 𝑔𝑔𝑗𝑗 and the longitudes of the ascending nodes, ℎ𝑗𝑗  and conjugate momenta,  
 𝐿𝐿1 = 𝑚𝑚0𝑚𝑚1

𝑚𝑚0+𝑚𝑚1
√𝑘𝑘2(𝑚𝑚0 + 𝑚𝑚1)𝑎𝑎1, 𝐿𝐿2 = 𝑚𝑚2(𝑚𝑚0+𝑚𝑚1)

𝑚𝑚0+𝑚𝑚1+𝑚𝑚2
√𝑘𝑘2(𝑚𝑚0 + 𝑚𝑚1 + 𝑚𝑚2)𝑎𝑎2, 𝐺𝐺1 = 𝐿𝐿1√1 − 𝑒𝑒1

2,            

𝐺𝐺2 = 𝐿𝐿2√1 − 𝑒𝑒2
2,  𝐻𝐻1 = 𝐺𝐺1 cos 𝑖𝑖1, and 𝐻𝐻2 = 𝐺𝐺2 cos 𝑖𝑖2. 

 
The Hamiltonian is given by Michaely & Perets (2014) as: 

 
ℋ = ℋ0 + ℋ1 + ℋ2                                                                       (2) 

 
where  

ℋ0 = − 𝛽𝛽0
2𝐿𝐿1

2 − 𝛽𝛽0
2𝐿𝐿2

2  

ℋ1 = −4𝛽𝛽2 (𝐿𝐿1
4

𝐿𝐿2
6 ) (𝑟𝑟1

𝑎𝑎1
)

2
(𝑎𝑎2

𝑟𝑟2
)

3
(3 cos2 𝜑𝜑 − 1) 

ℋ2 = −2𝛽𝛽3 (𝐿𝐿1
6

𝐿𝐿2
8 ) (𝑟𝑟1

𝑎𝑎1
)

3
(𝑎𝑎2

𝑟𝑟2
)

4
(5 cos3 𝜑𝜑 − 3 cos 𝜑𝜑) 

 
with 𝛽𝛽0 = ℊ𝑚𝑚0𝑚𝑚1

𝐿𝐿12

𝑎𝑎1
, 𝛽𝛽1 = ℊ𝑚𝑚2(𝑚𝑚0 + 𝑚𝑚1) 𝐿𝐿22

𝑎𝑎2
, 𝛽𝛽2 = ℊ

16
(𝑚𝑚0+𝑚𝑚1)7𝑚𝑚27

(𝑚𝑚0𝑚𝑚1)3(𝑚𝑚0+𝑚𝑚1+𝑚𝑚2)3  , 

𝛽𝛽2 = ℊ
4

(𝑚𝑚0+𝑚𝑚1)9𝑚𝑚2
9(𝑚𝑚0−𝑚𝑚1)

(𝑚𝑚0𝑚𝑚1)5(𝑚𝑚0+𝑚𝑚1+𝑚𝑚2)4,  and cos 𝜑𝜑 can be written using orbital elements as in Rahoma (2014) and 
Rahoma & Deleflie (2014) 
 

cos 𝜑𝜑 = ∑ 𝐴𝐴𝑖𝑖𝑖𝑖 cos(𝑓𝑓1  + 𝜔𝜔1 + 𝑖𝑖(𝑓𝑓2  + 𝜔𝜔2) + 𝑗𝑗(𝛺𝛺2 − 𝛺𝛺1))
1

𝑖𝑖,𝑗𝑗=−1
                             (3) 

 
where the non-vanishing coefficients are 

𝐴𝐴−1−1 = 1
4 (1 + cos 𝑖𝑖1 + cos 𝑖𝑖2 + cos 𝑖𝑖1 cos 𝑖𝑖2) 

𝐴𝐴−10 = 1
2 sin 𝑖𝑖1 sin 𝑖𝑖2 

𝐴𝐴−11 = 1
4 (1 − cos 𝑖𝑖1 − cos 𝑖𝑖2 + cos 𝑖𝑖1 cos 𝑖𝑖2) 

𝐴𝐴1−1 = 1
4 (1 + cos 𝑖𝑖1 − cos 𝑖𝑖2 − cos 𝑖𝑖1 cos 𝑖𝑖2) 

𝐴𝐴10 = − 1
2 sin 𝑖𝑖1 sin 𝑖𝑖2 

𝐴𝐴11 = 1
4 (1 − cos 𝑖𝑖1 + cos 𝑖𝑖2 − cos 𝑖𝑖1 cos 𝑖𝑖2) 
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where ℊ is the gravitational constant, 𝛼𝛼 = 𝑎𝑎1 𝑎𝑎2⁄ , 𝒫𝒫𝑆𝑆 are Legendre polynomials,  𝜑𝜑 is the angle between 
𝑟𝑟1 and 𝑟𝑟2,  and 

𝑀𝑀𝑠𝑠 = 𝑚𝑚0𝑚𝑚1𝑚𝑚2
𝑚𝑚0

𝑠𝑠−1 − (−𝑚𝑚1)𝑠𝑠−1

(𝑚𝑚0 + 𝑚𝑚1)𝑠𝑠  

 
The Delaunay’s elements are defined as: 𝑙𝑙𝑗𝑗  is the mean of the anomalies of object  , the 

arguments of periastron, 𝑔𝑔𝑗𝑗 and the longitudes of the ascending nodes, ℎ𝑗𝑗  and conjugate momenta,  
 𝐿𝐿1 = 𝑚𝑚0𝑚𝑚1

𝑚𝑚0+𝑚𝑚1
√𝑘𝑘2(𝑚𝑚0 + 𝑚𝑚1)𝑎𝑎1, 𝐿𝐿2 = 𝑚𝑚2(𝑚𝑚0+𝑚𝑚1)

𝑚𝑚0+𝑚𝑚1+𝑚𝑚2
√𝑘𝑘2(𝑚𝑚0 + 𝑚𝑚1 + 𝑚𝑚2)𝑎𝑎2, 𝐺𝐺1 = 𝐿𝐿1√1 − 𝑒𝑒1

2,            

𝐺𝐺2 = 𝐿𝐿2√1 − 𝑒𝑒2
2,  𝐻𝐻1 = 𝐺𝐺1 cos 𝑖𝑖1, and 𝐻𝐻2 = 𝐺𝐺2 cos 𝑖𝑖2. 

 
The Hamiltonian is given by Michaely & Perets (2014) as: 

 
ℋ = ℋ0 + ℋ1 + ℋ2                                                                       (2) 

 
where  

ℋ0 = − 𝛽𝛽0
2𝐿𝐿1

2 − 𝛽𝛽0
2𝐿𝐿2

2  

ℋ1 = −4𝛽𝛽2 (𝐿𝐿1
4

𝐿𝐿2
6 ) (𝑟𝑟1

𝑎𝑎1
)

2
(𝑎𝑎2

𝑟𝑟2
)

3
(3 cos2 𝜑𝜑 − 1) 

ℋ2 = −2𝛽𝛽3 (𝐿𝐿1
6

𝐿𝐿2
8 ) (𝑟𝑟1

𝑎𝑎1
)

3
(𝑎𝑎2

𝑟𝑟2
)

4
(5 cos3 𝜑𝜑 − 3 cos 𝜑𝜑) 

 
with 𝛽𝛽0 = ℊ𝑚𝑚0𝑚𝑚1

𝐿𝐿12

𝑎𝑎1
, 𝛽𝛽1 = ℊ𝑚𝑚2(𝑚𝑚0 + 𝑚𝑚1) 𝐿𝐿22

𝑎𝑎2
, 𝛽𝛽2 = ℊ

16
(𝑚𝑚0+𝑚𝑚1)7𝑚𝑚27

(𝑚𝑚0𝑚𝑚1)3(𝑚𝑚0+𝑚𝑚1+𝑚𝑚2)3  , 

𝛽𝛽2 = ℊ
4

(𝑚𝑚0+𝑚𝑚1)9𝑚𝑚2
9(𝑚𝑚0−𝑚𝑚1)

(𝑚𝑚0𝑚𝑚1)5(𝑚𝑚0+𝑚𝑚1+𝑚𝑚2)4,  and cos 𝜑𝜑 can be written using orbital elements as in Rahoma (2014) and 
Rahoma & Deleflie (2014) 
 

cos 𝜑𝜑 = ∑ 𝐴𝐴𝑖𝑖𝑖𝑖 cos(𝑓𝑓1  + 𝜔𝜔1 + 𝑖𝑖(𝑓𝑓2  + 𝜔𝜔2) + 𝑗𝑗(𝛺𝛺2 − 𝛺𝛺1))
1

𝑖𝑖,𝑗𝑗=−1
                             (3) 

 
where the non-vanishing coefficients are 

𝐴𝐴−1−1 = 1
4 (1 + cos 𝑖𝑖1 + cos 𝑖𝑖2 + cos 𝑖𝑖1 cos 𝑖𝑖2) 

𝐴𝐴−10 = 1
2 sin 𝑖𝑖1 sin 𝑖𝑖2 

𝐴𝐴−11 = 1
4 (1 − cos 𝑖𝑖1 − cos 𝑖𝑖2 + cos 𝑖𝑖1 cos 𝑖𝑖2) 

𝐴𝐴1−1 = 1
4 (1 + cos 𝑖𝑖1 − cos 𝑖𝑖2 − cos 𝑖𝑖1 cos 𝑖𝑖2) 

𝐴𝐴10 = − 1
2 sin 𝑖𝑖1 sin 𝑖𝑖2 

𝐴𝐴11 = 1
4 (1 − cos 𝑖𝑖1 + cos 𝑖𝑖2 − cos 𝑖𝑖1 cos 𝑖𝑖2) 

	

3 
 

where ℊ is the gravitational constant, 𝛼𝛼 = 𝑎𝑎1 𝑎𝑎2⁄ , 𝒫𝒫𝑆𝑆 are Legendre polynomials,  𝜑𝜑 is the angle between 
𝑟𝑟1 and 𝑟𝑟2,  and 

𝑀𝑀𝑠𝑠 = 𝑚𝑚0𝑚𝑚1𝑚𝑚2
𝑚𝑚0

𝑠𝑠−1 − (−𝑚𝑚1)𝑠𝑠−1

(𝑚𝑚0 + 𝑚𝑚1)𝑠𝑠  

 
The Delaunay’s elements are defined as: 𝑙𝑙𝑗𝑗  is the mean of the anomalies of object  , the 

arguments of periastron, 𝑔𝑔𝑗𝑗 and the longitudes of the ascending nodes, ℎ𝑗𝑗  and conjugate momenta,  
 𝐿𝐿1 = 𝑚𝑚0𝑚𝑚1

𝑚𝑚0+𝑚𝑚1
√𝑘𝑘2(𝑚𝑚0 + 𝑚𝑚1)𝑎𝑎1, 𝐿𝐿2 = 𝑚𝑚2(𝑚𝑚0+𝑚𝑚1)

𝑚𝑚0+𝑚𝑚1+𝑚𝑚2
√𝑘𝑘2(𝑚𝑚0 + 𝑚𝑚1 + 𝑚𝑚2)𝑎𝑎2, 𝐺𝐺1 = 𝐿𝐿1√1 − 𝑒𝑒1

2,            

𝐺𝐺2 = 𝐿𝐿2√1 − 𝑒𝑒2
2,  𝐻𝐻1 = 𝐺𝐺1 cos 𝑖𝑖1, and 𝐻𝐻2 = 𝐺𝐺2 cos 𝑖𝑖2. 

 
The Hamiltonian is given by Michaely & Perets (2014) as: 

 
ℋ = ℋ0 + ℋ1 + ℋ2                                                                       (2) 

 
where  

ℋ0 = − 𝛽𝛽0
2𝐿𝐿1

2 − 𝛽𝛽0
2𝐿𝐿2

2  

ℋ1 = −4𝛽𝛽2 (𝐿𝐿1
4

𝐿𝐿2
6 ) (𝑟𝑟1

𝑎𝑎1
)

2
(𝑎𝑎2

𝑟𝑟2
)

3
(3 cos2 𝜑𝜑 − 1) 

ℋ2 = −2𝛽𝛽3 (𝐿𝐿1
6

𝐿𝐿2
8 ) (𝑟𝑟1

𝑎𝑎1
)

3
(𝑎𝑎2

𝑟𝑟2
)

4
(5 cos3 𝜑𝜑 − 3 cos 𝜑𝜑) 

 
with 𝛽𝛽0 = ℊ𝑚𝑚0𝑚𝑚1

𝐿𝐿12

𝑎𝑎1
, 𝛽𝛽1 = ℊ𝑚𝑚2(𝑚𝑚0 + 𝑚𝑚1) 𝐿𝐿22

𝑎𝑎2
, 𝛽𝛽2 = ℊ

16
(𝑚𝑚0+𝑚𝑚1)7𝑚𝑚27

(𝑚𝑚0𝑚𝑚1)3(𝑚𝑚0+𝑚𝑚1+𝑚𝑚2)3  , 

𝛽𝛽2 = ℊ
4

(𝑚𝑚0+𝑚𝑚1)9𝑚𝑚2
9(𝑚𝑚0−𝑚𝑚1)

(𝑚𝑚0𝑚𝑚1)5(𝑚𝑚0+𝑚𝑚1+𝑚𝑚2)4,  and cos 𝜑𝜑 can be written using orbital elements as in Rahoma (2014) and 
Rahoma & Deleflie (2014) 
 

cos 𝜑𝜑 = ∑ 𝐴𝐴𝑖𝑖𝑖𝑖 cos(𝑓𝑓1  + 𝜔𝜔1 + 𝑖𝑖(𝑓𝑓2  + 𝜔𝜔2) + 𝑗𝑗(𝛺𝛺2 − 𝛺𝛺1))
1

𝑖𝑖,𝑗𝑗=−1
                             (3) 

 
where the non-vanishing coefficients are 

𝐴𝐴−1−1 = 1
4 (1 + cos 𝑖𝑖1 + cos 𝑖𝑖2 + cos 𝑖𝑖1 cos 𝑖𝑖2) 

𝐴𝐴−10 = 1
2 sin 𝑖𝑖1 sin 𝑖𝑖2 

𝐴𝐴−11 = 1
4 (1 − cos 𝑖𝑖1 − cos 𝑖𝑖2 + cos 𝑖𝑖1 cos 𝑖𝑖2) 

𝐴𝐴1−1 = 1
4 (1 + cos 𝑖𝑖1 − cos 𝑖𝑖2 − cos 𝑖𝑖1 cos 𝑖𝑖2) 

𝐴𝐴10 = − 1
2 sin 𝑖𝑖1 sin 𝑖𝑖2 

𝐴𝐴11 = 1
4 (1 − cos 𝑖𝑖1 + cos 𝑖𝑖2 − cos 𝑖𝑖1 cos 𝑖𝑖2) 

	

3 
 

where ℊ is the gravitational constant, 𝛼𝛼 = 𝑎𝑎1 𝑎𝑎2⁄ , 𝒫𝒫𝑆𝑆 are Legendre polynomials,  𝜑𝜑 is the angle between 
𝑟𝑟1 and 𝑟𝑟2,  and 

𝑀𝑀𝑠𝑠 = 𝑚𝑚0𝑚𝑚1𝑚𝑚2
𝑚𝑚0

𝑠𝑠−1 − (−𝑚𝑚1)𝑠𝑠−1

(𝑚𝑚0 + 𝑚𝑚1)𝑠𝑠  

 
The Delaunay’s elements are defined as: 𝑙𝑙𝑗𝑗  is the mean of the anomalies of object  , the 

arguments of periastron, 𝑔𝑔𝑗𝑗 and the longitudes of the ascending nodes, ℎ𝑗𝑗  and conjugate momenta,  
 𝐿𝐿1 = 𝑚𝑚0𝑚𝑚1

𝑚𝑚0+𝑚𝑚1
√𝑘𝑘2(𝑚𝑚0 + 𝑚𝑚1)𝑎𝑎1, 𝐿𝐿2 = 𝑚𝑚2(𝑚𝑚0+𝑚𝑚1)

𝑚𝑚0+𝑚𝑚1+𝑚𝑚2
√𝑘𝑘2(𝑚𝑚0 + 𝑚𝑚1 + 𝑚𝑚2)𝑎𝑎2, 𝐺𝐺1 = 𝐿𝐿1√1 − 𝑒𝑒1

2,            

𝐺𝐺2 = 𝐿𝐿2√1 − 𝑒𝑒2
2,  𝐻𝐻1 = 𝐺𝐺1 cos 𝑖𝑖1, and 𝐻𝐻2 = 𝐺𝐺2 cos 𝑖𝑖2. 

 
The Hamiltonian is given by Michaely & Perets (2014) as: 

 
ℋ = ℋ0 + ℋ1 + ℋ2                                                                       (2) 

 
where  

ℋ0 = − 𝛽𝛽0
2𝐿𝐿1

2 − 𝛽𝛽0
2𝐿𝐿2

2  

ℋ1 = −4𝛽𝛽2 (𝐿𝐿1
4

𝐿𝐿2
6 ) (𝑟𝑟1

𝑎𝑎1
)

2
(𝑎𝑎2

𝑟𝑟2
)

3
(3 cos2 𝜑𝜑 − 1) 

ℋ2 = −2𝛽𝛽3 (𝐿𝐿1
6

𝐿𝐿2
8 ) (𝑟𝑟1

𝑎𝑎1
)

3
(𝑎𝑎2

𝑟𝑟2
)

4
(5 cos3 𝜑𝜑 − 3 cos 𝜑𝜑) 

 
with 𝛽𝛽0 = ℊ𝑚𝑚0𝑚𝑚1

𝐿𝐿12

𝑎𝑎1
, 𝛽𝛽1 = ℊ𝑚𝑚2(𝑚𝑚0 + 𝑚𝑚1) 𝐿𝐿22

𝑎𝑎2
, 𝛽𝛽2 = ℊ

16
(𝑚𝑚0+𝑚𝑚1)7𝑚𝑚27

(𝑚𝑚0𝑚𝑚1)3(𝑚𝑚0+𝑚𝑚1+𝑚𝑚2)3  , 

𝛽𝛽2 = ℊ
4

(𝑚𝑚0+𝑚𝑚1)9𝑚𝑚2
9(𝑚𝑚0−𝑚𝑚1)

(𝑚𝑚0𝑚𝑚1)5(𝑚𝑚0+𝑚𝑚1+𝑚𝑚2)4,  and cos 𝜑𝜑 can be written using orbital elements as in Rahoma (2014) and 
Rahoma & Deleflie (2014) 
 

cos 𝜑𝜑 = ∑ 𝐴𝐴𝑖𝑖𝑖𝑖 cos(𝑓𝑓1  + 𝜔𝜔1 + 𝑖𝑖(𝑓𝑓2  + 𝜔𝜔2) + 𝑗𝑗(𝛺𝛺2 − 𝛺𝛺1))
1

𝑖𝑖,𝑗𝑗=−1
                             (3) 

 
where the non-vanishing coefficients are 

𝐴𝐴−1−1 = 1
4 (1 + cos 𝑖𝑖1 + cos 𝑖𝑖2 + cos 𝑖𝑖1 cos 𝑖𝑖2) 

𝐴𝐴−10 = 1
2 sin 𝑖𝑖1 sin 𝑖𝑖2 

𝐴𝐴−11 = 1
4 (1 − cos 𝑖𝑖1 − cos 𝑖𝑖2 + cos 𝑖𝑖1 cos 𝑖𝑖2) 

𝐴𝐴1−1 = 1
4 (1 + cos 𝑖𝑖1 − cos 𝑖𝑖2 − cos 𝑖𝑖1 cos 𝑖𝑖2) 

𝐴𝐴10 = − 1
2 sin 𝑖𝑖1 sin 𝑖𝑖2 

𝐴𝐴11 = 1
4 (1 − cos 𝑖𝑖1 + cos 𝑖𝑖2 − cos 𝑖𝑖1 cos 𝑖𝑖2) 
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where ℊ is the gravitational constant, 𝛼𝛼 = 𝑎𝑎1 𝑎𝑎2⁄ , 𝒫𝒫𝑆𝑆 are Legendre polynomials,  𝜑𝜑 is the angle between 
𝑟𝑟1 and 𝑟𝑟2,  and 

𝑀𝑀𝑠𝑠 = 𝑚𝑚0𝑚𝑚1𝑚𝑚2
𝑚𝑚0

𝑠𝑠−1 − (−𝑚𝑚1)𝑠𝑠−1

(𝑚𝑚0 + 𝑚𝑚1)𝑠𝑠  

 
The Delaunay’s elements are defined as: 𝑙𝑙𝑗𝑗  is the mean of the anomalies of object  , the 

arguments of periastron, 𝑔𝑔𝑗𝑗 and the longitudes of the ascending nodes, ℎ𝑗𝑗  and conjugate momenta,  
 𝐿𝐿1 = 𝑚𝑚0𝑚𝑚1

𝑚𝑚0+𝑚𝑚1
√𝑘𝑘2(𝑚𝑚0 + 𝑚𝑚1)𝑎𝑎1, 𝐿𝐿2 = 𝑚𝑚2(𝑚𝑚0+𝑚𝑚1)

𝑚𝑚0+𝑚𝑚1+𝑚𝑚2
√𝑘𝑘2(𝑚𝑚0 + 𝑚𝑚1 + 𝑚𝑚2)𝑎𝑎2, 𝐺𝐺1 = 𝐿𝐿1√1 − 𝑒𝑒1

2,            

𝐺𝐺2 = 𝐿𝐿2√1 − 𝑒𝑒2
2,  𝐻𝐻1 = 𝐺𝐺1 cos 𝑖𝑖1, and 𝐻𝐻2 = 𝐺𝐺2 cos 𝑖𝑖2. 

 
The Hamiltonian is given by Michaely & Perets (2014) as: 

 
ℋ = ℋ0 + ℋ1 + ℋ2                                                                       (2) 

 
where  

ℋ0 = − 𝛽𝛽0
2𝐿𝐿1

2 − 𝛽𝛽0
2𝐿𝐿2

2  

ℋ1 = −4𝛽𝛽2 (𝐿𝐿1
4

𝐿𝐿2
6 ) (𝑟𝑟1

𝑎𝑎1
)

2
(𝑎𝑎2

𝑟𝑟2
)

3
(3 cos2 𝜑𝜑 − 1) 

ℋ2 = −2𝛽𝛽3 (𝐿𝐿1
6

𝐿𝐿2
8 ) (𝑟𝑟1

𝑎𝑎1
)

3
(𝑎𝑎2

𝑟𝑟2
)

4
(5 cos3 𝜑𝜑 − 3 cos 𝜑𝜑) 

 
with 𝛽𝛽0 = ℊ𝑚𝑚0𝑚𝑚1

𝐿𝐿12

𝑎𝑎1
, 𝛽𝛽1 = ℊ𝑚𝑚2(𝑚𝑚0 + 𝑚𝑚1) 𝐿𝐿22

𝑎𝑎2
, 𝛽𝛽2 = ℊ

16
(𝑚𝑚0+𝑚𝑚1)7𝑚𝑚27

(𝑚𝑚0𝑚𝑚1)3(𝑚𝑚0+𝑚𝑚1+𝑚𝑚2)3  , 

𝛽𝛽2 = ℊ
4

(𝑚𝑚0+𝑚𝑚1)9𝑚𝑚2
9(𝑚𝑚0−𝑚𝑚1)

(𝑚𝑚0𝑚𝑚1)5(𝑚𝑚0+𝑚𝑚1+𝑚𝑚2)4,  and cos 𝜑𝜑 can be written using orbital elements as in Rahoma (2014) and 
Rahoma & Deleflie (2014) 
 

cos 𝜑𝜑 = ∑ 𝐴𝐴𝑖𝑖𝑖𝑖 cos(𝑓𝑓1  + 𝜔𝜔1 + 𝑖𝑖(𝑓𝑓2  + 𝜔𝜔2) + 𝑗𝑗(𝛺𝛺2 − 𝛺𝛺1))
1

𝑖𝑖,𝑗𝑗=−1
                             (3) 

 
where the non-vanishing coefficients are 

𝐴𝐴−1−1 = 1
4 (1 + cos 𝑖𝑖1 + cos 𝑖𝑖2 + cos 𝑖𝑖1 cos 𝑖𝑖2) 

𝐴𝐴−10 = 1
2 sin 𝑖𝑖1 sin 𝑖𝑖2 

𝐴𝐴−11 = 1
4 (1 − cos 𝑖𝑖1 − cos 𝑖𝑖2 + cos 𝑖𝑖1 cos 𝑖𝑖2) 

𝐴𝐴1−1 = 1
4 (1 + cos 𝑖𝑖1 − cos 𝑖𝑖2 − cos 𝑖𝑖1 cos 𝑖𝑖2) 

𝐴𝐴10 = − 1
2 sin 𝑖𝑖1 sin 𝑖𝑖2 

𝐴𝐴11 = 1
4 (1 − cos 𝑖𝑖1 + cos 𝑖𝑖2 − cos 𝑖𝑖1 cos 𝑖𝑖2) 

The Hamiltonian is given by Michaely & Perets (2014) as:
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where ℊ is the gravitational constant, 𝛼𝛼 = 𝑎𝑎1 𝑎𝑎2⁄ , 𝒫𝒫𝑆𝑆 are Legendre polynomials,  𝜑𝜑 is the angle between 
𝑟𝑟1 and 𝑟𝑟2,  and 

𝑀𝑀𝑠𝑠 = 𝑚𝑚0𝑚𝑚1𝑚𝑚2
𝑚𝑚0

𝑠𝑠−1 − (−𝑚𝑚1)𝑠𝑠−1

(𝑚𝑚0 + 𝑚𝑚1)𝑠𝑠  

 
The Delaunay’s elements are defined as: 𝑙𝑙𝑗𝑗  is the mean of the anomalies of object  , the 

arguments of periastron, 𝑔𝑔𝑗𝑗 and the longitudes of the ascending nodes, ℎ𝑗𝑗  and conjugate momenta,  
 𝐿𝐿1 = 𝑚𝑚0𝑚𝑚1

𝑚𝑚0+𝑚𝑚1
√𝑘𝑘2(𝑚𝑚0 + 𝑚𝑚1)𝑎𝑎1, 𝐿𝐿2 = 𝑚𝑚2(𝑚𝑚0+𝑚𝑚1)

𝑚𝑚0+𝑚𝑚1+𝑚𝑚2
√𝑘𝑘2(𝑚𝑚0 + 𝑚𝑚1 + 𝑚𝑚2)𝑎𝑎2, 𝐺𝐺1 = 𝐿𝐿1√1 − 𝑒𝑒1

2,            

𝐺𝐺2 = 𝐿𝐿2√1 − 𝑒𝑒2
2,  𝐻𝐻1 = 𝐺𝐺1 cos 𝑖𝑖1, and 𝐻𝐻2 = 𝐺𝐺2 cos 𝑖𝑖2. 

 
The Hamiltonian is given by Michaely & Perets (2014) as: 

 
ℋ = ℋ0 + ℋ1 + ℋ2                                                                       (2) 

 
where  

ℋ0 = − 𝛽𝛽0
2𝐿𝐿1

2 − 𝛽𝛽0
2𝐿𝐿2

2  

ℋ1 = −4𝛽𝛽2 (𝐿𝐿1
4

𝐿𝐿2
6 ) (𝑟𝑟1

𝑎𝑎1
)

2
(𝑎𝑎2

𝑟𝑟2
)

3
(3 cos2 𝜑𝜑 − 1) 

ℋ2 = −2𝛽𝛽3 (𝐿𝐿1
6

𝐿𝐿2
8 ) (𝑟𝑟1

𝑎𝑎1
)

3
(𝑎𝑎2

𝑟𝑟2
)

4
(5 cos3 𝜑𝜑 − 3 cos 𝜑𝜑) 

 
with 𝛽𝛽0 = ℊ𝑚𝑚0𝑚𝑚1

𝐿𝐿12

𝑎𝑎1
, 𝛽𝛽1 = ℊ𝑚𝑚2(𝑚𝑚0 + 𝑚𝑚1) 𝐿𝐿22

𝑎𝑎2
, 𝛽𝛽2 = ℊ

16
(𝑚𝑚0+𝑚𝑚1)7𝑚𝑚27

(𝑚𝑚0𝑚𝑚1)3(𝑚𝑚0+𝑚𝑚1+𝑚𝑚2)3  , 

𝛽𝛽2 = ℊ
4

(𝑚𝑚0+𝑚𝑚1)9𝑚𝑚2
9(𝑚𝑚0−𝑚𝑚1)

(𝑚𝑚0𝑚𝑚1)5(𝑚𝑚0+𝑚𝑚1+𝑚𝑚2)4,  and cos 𝜑𝜑 can be written using orbital elements as in Rahoma (2014) and 
Rahoma & Deleflie (2014) 
 

cos 𝜑𝜑 = ∑ 𝐴𝐴𝑖𝑖𝑖𝑖 cos(𝑓𝑓1  + 𝜔𝜔1 + 𝑖𝑖(𝑓𝑓2  + 𝜔𝜔2) + 𝑗𝑗(𝛺𝛺2 − 𝛺𝛺1))
1

𝑖𝑖,𝑗𝑗=−1
                             (3) 

 
where the non-vanishing coefficients are 

𝐴𝐴−1−1 = 1
4 (1 + cos 𝑖𝑖1 + cos 𝑖𝑖2 + cos 𝑖𝑖1 cos 𝑖𝑖2) 

𝐴𝐴−10 = 1
2 sin 𝑖𝑖1 sin 𝑖𝑖2 

𝐴𝐴−11 = 1
4 (1 − cos 𝑖𝑖1 − cos 𝑖𝑖2 + cos 𝑖𝑖1 cos 𝑖𝑖2) 

𝐴𝐴1−1 = 1
4 (1 + cos 𝑖𝑖1 − cos 𝑖𝑖2 − cos 𝑖𝑖1 cos 𝑖𝑖2) 

𝐴𝐴10 = − 1
2 sin 𝑖𝑖1 sin 𝑖𝑖2 

𝐴𝐴11 = 1
4 (1 − cos 𝑖𝑖1 + cos 𝑖𝑖2 − cos 𝑖𝑖1 cos 𝑖𝑖2) 

� (2)

where
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where ℊ is the gravitational constant, 𝛼𝛼 = 𝑎𝑎1 𝑎𝑎2⁄ , 𝒫𝒫𝑆𝑆 are Legendre polynomials,  𝜑𝜑 is the angle between 
𝑟𝑟1 and 𝑟𝑟2,  and 

𝑀𝑀𝑠𝑠 = 𝑚𝑚0𝑚𝑚1𝑚𝑚2
𝑚𝑚0

𝑠𝑠−1 − (−𝑚𝑚1)𝑠𝑠−1

(𝑚𝑚0 + 𝑚𝑚1)𝑠𝑠  

 
The Delaunay’s elements are defined as: 𝑙𝑙𝑗𝑗  is the mean of the anomalies of object  , the 

arguments of periastron, 𝑔𝑔𝑗𝑗 and the longitudes of the ascending nodes, ℎ𝑗𝑗  and conjugate momenta,  
 𝐿𝐿1 = 𝑚𝑚0𝑚𝑚1

𝑚𝑚0+𝑚𝑚1
√𝑘𝑘2(𝑚𝑚0 + 𝑚𝑚1)𝑎𝑎1, 𝐿𝐿2 = 𝑚𝑚2(𝑚𝑚0+𝑚𝑚1)

𝑚𝑚0+𝑚𝑚1+𝑚𝑚2
√𝑘𝑘2(𝑚𝑚0 + 𝑚𝑚1 + 𝑚𝑚2)𝑎𝑎2, 𝐺𝐺1 = 𝐿𝐿1√1 − 𝑒𝑒1

2,            

𝐺𝐺2 = 𝐿𝐿2√1 − 𝑒𝑒2
2,  𝐻𝐻1 = 𝐺𝐺1 cos 𝑖𝑖1, and 𝐻𝐻2 = 𝐺𝐺2 cos 𝑖𝑖2. 

 
The Hamiltonian is given by Michaely & Perets (2014) as: 

 
ℋ = ℋ0 + ℋ1 + ℋ2                                                                       (2) 

 
where  

ℋ0 = − 𝛽𝛽0
2𝐿𝐿1

2 − 𝛽𝛽0
2𝐿𝐿2

2  

ℋ1 = −4𝛽𝛽2 (𝐿𝐿1
4

𝐿𝐿2
6 ) (𝑟𝑟1

𝑎𝑎1
)

2
(𝑎𝑎2

𝑟𝑟2
)

3
(3 cos2 𝜑𝜑 − 1) 

ℋ2 = −2𝛽𝛽3 (𝐿𝐿1
6

𝐿𝐿2
8 ) (𝑟𝑟1

𝑎𝑎1
)

3
(𝑎𝑎2

𝑟𝑟2
)

4
(5 cos3 𝜑𝜑 − 3 cos 𝜑𝜑) 

 
with 𝛽𝛽0 = ℊ𝑚𝑚0𝑚𝑚1

𝐿𝐿12

𝑎𝑎1
, 𝛽𝛽1 = ℊ𝑚𝑚2(𝑚𝑚0 + 𝑚𝑚1) 𝐿𝐿22

𝑎𝑎2
, 𝛽𝛽2 = ℊ

16
(𝑚𝑚0+𝑚𝑚1)7𝑚𝑚27

(𝑚𝑚0𝑚𝑚1)3(𝑚𝑚0+𝑚𝑚1+𝑚𝑚2)3  , 

𝛽𝛽2 = ℊ
4

(𝑚𝑚0+𝑚𝑚1)9𝑚𝑚2
9(𝑚𝑚0−𝑚𝑚1)

(𝑚𝑚0𝑚𝑚1)5(𝑚𝑚0+𝑚𝑚1+𝑚𝑚2)4,  and cos 𝜑𝜑 can be written using orbital elements as in Rahoma (2014) and 
Rahoma & Deleflie (2014) 
 

cos 𝜑𝜑 = ∑ 𝐴𝐴𝑖𝑖𝑖𝑖 cos(𝑓𝑓1  + 𝜔𝜔1 + 𝑖𝑖(𝑓𝑓2  + 𝜔𝜔2) + 𝑗𝑗(𝛺𝛺2 − 𝛺𝛺1))
1

𝑖𝑖,𝑗𝑗=−1
                             (3) 

 
where the non-vanishing coefficients are 

𝐴𝐴−1−1 = 1
4 (1 + cos 𝑖𝑖1 + cos 𝑖𝑖2 + cos 𝑖𝑖1 cos 𝑖𝑖2) 

𝐴𝐴−10 = 1
2 sin 𝑖𝑖1 sin 𝑖𝑖2 

𝐴𝐴−11 = 1
4 (1 − cos 𝑖𝑖1 − cos 𝑖𝑖2 + cos 𝑖𝑖1 cos 𝑖𝑖2) 

𝐴𝐴1−1 = 1
4 (1 + cos 𝑖𝑖1 − cos 𝑖𝑖2 − cos 𝑖𝑖1 cos 𝑖𝑖2) 

𝐴𝐴10 = − 1
2 sin 𝑖𝑖1 sin 𝑖𝑖2 

𝐴𝐴11 = 1
4 (1 − cos 𝑖𝑖1 + cos 𝑖𝑖2 − cos 𝑖𝑖1 cos 𝑖𝑖2) 

3 
 

where ℊ is the gravitational constant, 𝛼𝛼 = 𝑎𝑎1 𝑎𝑎2⁄ , 𝒫𝒫𝑆𝑆 are Legendre polynomials,  𝜑𝜑 is the angle between 
𝑟𝑟1 and 𝑟𝑟2,  and 

𝑀𝑀𝑠𝑠 = 𝑚𝑚0𝑚𝑚1𝑚𝑚2
𝑚𝑚0

𝑠𝑠−1 − (−𝑚𝑚1)𝑠𝑠−1

(𝑚𝑚0 + 𝑚𝑚1)𝑠𝑠  

 
The Delaunay’s elements are defined as: 𝑙𝑙𝑗𝑗  is the mean of the anomalies of object  , the 

arguments of periastron, 𝑔𝑔𝑗𝑗 and the longitudes of the ascending nodes, ℎ𝑗𝑗  and conjugate momenta,  
 𝐿𝐿1 = 𝑚𝑚0𝑚𝑚1

𝑚𝑚0+𝑚𝑚1
√𝑘𝑘2(𝑚𝑚0 + 𝑚𝑚1)𝑎𝑎1, 𝐿𝐿2 = 𝑚𝑚2(𝑚𝑚0+𝑚𝑚1)

𝑚𝑚0+𝑚𝑚1+𝑚𝑚2
√𝑘𝑘2(𝑚𝑚0 + 𝑚𝑚1 + 𝑚𝑚2)𝑎𝑎2, 𝐺𝐺1 = 𝐿𝐿1√1 − 𝑒𝑒1

2,            

𝐺𝐺2 = 𝐿𝐿2√1 − 𝑒𝑒2
2,  𝐻𝐻1 = 𝐺𝐺1 cos 𝑖𝑖1, and 𝐻𝐻2 = 𝐺𝐺2 cos 𝑖𝑖2. 

 
The Hamiltonian is given by Michaely & Perets (2014) as: 

 
ℋ = ℋ0 + ℋ1 + ℋ2                                                                       (2) 

 
where  

ℋ0 = − 𝛽𝛽0
2𝐿𝐿1

2 − 𝛽𝛽0
2𝐿𝐿2

2  

ℋ1 = −4𝛽𝛽2 (𝐿𝐿1
4

𝐿𝐿2
6 ) (𝑟𝑟1

𝑎𝑎1
)

2
(𝑎𝑎2

𝑟𝑟2
)

3
(3 cos2 𝜑𝜑 − 1) 

ℋ2 = −2𝛽𝛽3 (𝐿𝐿1
6

𝐿𝐿2
8 ) (𝑟𝑟1

𝑎𝑎1
)

3
(𝑎𝑎2

𝑟𝑟2
)

4
(5 cos3 𝜑𝜑 − 3 cos 𝜑𝜑) 

 
with 𝛽𝛽0 = ℊ𝑚𝑚0𝑚𝑚1

𝐿𝐿12

𝑎𝑎1
, 𝛽𝛽1 = ℊ𝑚𝑚2(𝑚𝑚0 + 𝑚𝑚1) 𝐿𝐿22

𝑎𝑎2
, 𝛽𝛽2 = ℊ

16
(𝑚𝑚0+𝑚𝑚1)7𝑚𝑚27

(𝑚𝑚0𝑚𝑚1)3(𝑚𝑚0+𝑚𝑚1+𝑚𝑚2)3  , 

𝛽𝛽2 = ℊ
4

(𝑚𝑚0+𝑚𝑚1)9𝑚𝑚2
9(𝑚𝑚0−𝑚𝑚1)

(𝑚𝑚0𝑚𝑚1)5(𝑚𝑚0+𝑚𝑚1+𝑚𝑚2)4,  and cos 𝜑𝜑 can be written using orbital elements as in Rahoma (2014) and 
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1
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)
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)
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𝑎𝑎2
, 𝛽𝛽2 = ℊ
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(𝑚𝑚0+𝑚𝑚1)7𝑚𝑚27

(𝑚𝑚0𝑚𝑚1)3(𝑚𝑚0+𝑚𝑚1+𝑚𝑚2)3  , 

𝛽𝛽2 = ℊ
4

(𝑚𝑚0+𝑚𝑚1)9𝑚𝑚2
9(𝑚𝑚0−𝑚𝑚1)

(𝑚𝑚0𝑚𝑚1)5(𝑚𝑚0+𝑚𝑚1+𝑚𝑚2)4,  and cos 𝜑𝜑 can be written using orbital elements as in Rahoma (2014) and 
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𝑖𝑖,𝑗𝑗=−1
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where the non-vanishing coefficients are 

𝐴𝐴−1−1 = 1
4 (1 + cos 𝑖𝑖1 + cos 𝑖𝑖2 + cos 𝑖𝑖1 cos 𝑖𝑖2) 
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�

with

0 = 0 1
0
2

1
 ℊ

1 = 2( 0 + 1) 2
2

2
ℊ

2 = 16
( 0 + 1)7

2
7

( 0 1)3( 0 + 1 + 2)3
ℊ

3 = 4
( 0 + 1)9

2
9( 0 − 1)

( 0 1)5( 0 + 1 + 2)4
ℊ

and cosφ can be written using orbital elements as in Rahoma 

(2014) and Rahoma & Deleflie (2014)Fig. 1. Exoplanet orbit considering a triple body system.
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where ℊ is the gravitational constant, 𝛼𝛼 = 𝑎𝑎1 𝑎𝑎2⁄ , 𝒫𝒫𝑆𝑆 are Legendre polynomials,  𝜑𝜑 is the angle between 
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2,  𝐻𝐻1 = 𝐺𝐺1 cos 𝑖𝑖1, and 𝐻𝐻2 = 𝐺𝐺2 cos 𝑖𝑖2. 

 
The Hamiltonian is given by Michaely & Perets (2014) as: 

 
ℋ = ℋ0 + ℋ1 + ℋ2                                                                       (2) 

 
where  

ℋ0 = − 𝛽𝛽0
2𝐿𝐿1

2 − 𝛽𝛽0
2𝐿𝐿2

2  

ℋ1 = −4𝛽𝛽2 (𝐿𝐿1
4

𝐿𝐿2
6 ) (𝑟𝑟1

𝑎𝑎1
)

2
(𝑎𝑎2

𝑟𝑟2
)

3
(3 cos2 𝜑𝜑 − 1) 

ℋ2 = −2𝛽𝛽3 (𝐿𝐿1
6

𝐿𝐿2
8 ) (𝑟𝑟1

𝑎𝑎1
)

3
(𝑎𝑎2

𝑟𝑟2
)

4
(5 cos3 𝜑𝜑 − 3 cos 𝜑𝜑) 

 
with 𝛽𝛽0 = ℊ𝑚𝑚0𝑚𝑚1

𝐿𝐿12

𝑎𝑎1
, 𝛽𝛽1 = ℊ𝑚𝑚2(𝑚𝑚0 + 𝑚𝑚1) 𝐿𝐿22

𝑎𝑎2
, 𝛽𝛽2 = ℊ

16
(𝑚𝑚0+𝑚𝑚1)7𝑚𝑚27

(𝑚𝑚0𝑚𝑚1)3(𝑚𝑚0+𝑚𝑚1+𝑚𝑚2)3  , 

𝛽𝛽2 = ℊ
4

(𝑚𝑚0+𝑚𝑚1)9𝑚𝑚2
9(𝑚𝑚0−𝑚𝑚1)

(𝑚𝑚0𝑚𝑚1)5(𝑚𝑚0+𝑚𝑚1+𝑚𝑚2)4,  and cos 𝜑𝜑 can be written using orbital elements as in Rahoma (2014) and 
Rahoma & Deleflie (2014) 
 

cos 𝜑𝜑 = ∑ 𝐴𝐴𝑖𝑖𝑖𝑖 cos(𝑓𝑓1  + 𝜔𝜔1 + 𝑖𝑖(𝑓𝑓2  + 𝜔𝜔2) + 𝑗𝑗(𝛺𝛺2 − 𝛺𝛺1))
1

𝑖𝑖,𝑗𝑗=−1
                             (3) 

 
where the non-vanishing coefficients are 

𝐴𝐴−1−1 = 1
4 (1 + cos 𝑖𝑖1 + cos 𝑖𝑖2 + cos 𝑖𝑖1 cos 𝑖𝑖2) 

𝐴𝐴−10 = 1
2 sin 𝑖𝑖1 sin 𝑖𝑖2 

𝐴𝐴−11 = 1
4 (1 − cos 𝑖𝑖1 − cos 𝑖𝑖2 + cos 𝑖𝑖1 cos 𝑖𝑖2) 

𝐴𝐴1−1 = 1
4 (1 + cos 𝑖𝑖1 − cos 𝑖𝑖2 − cos 𝑖𝑖1 cos 𝑖𝑖2) 

𝐴𝐴10 = − 1
2 sin 𝑖𝑖1 sin 𝑖𝑖2 

𝐴𝐴11 = 1
4 (1 − cos 𝑖𝑖1 + cos 𝑖𝑖2 − cos 𝑖𝑖1 cos 𝑖𝑖2) 

� (3)

where the non-vanishing coefficients are

−1−1 =
1
4

(1 + cos 1 + cos 2 + cos 1 cos 2) 

−10 =
1
2

sin 1 sin 2 

−11 =
1
4

(1 − cos 1 − cos 2 + cos 1 cos 2) 

1−1 =
1
4

(1 + cos 1 − cos 2 − cos 1 cos 2) 

10 = −
1
2

sin 1 sin 2 

11 =
1
4

(1 − cos 1 + cos 2 − cos 1 cos 2) 

3. CALCULATIONS OF THE LONG TERMS 
DYNAMICS 

In most cases, it is better to present the movement over the 

long term, especially when discussing exoplanets. Therefore, 

the short period terms must be excluded by averaging the 

Hamiltonian (Eq. (2)) of the system over l
1
 and l

2
, where 

the conjugate momenta, L
1
 and L

2
, were included in the 

unperturbed terms to provide a smooth motion over the long 

period .

The standard average definition is 
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In most cases, it is better to present the movement over the long term, especially when discussing 
exoplanets.  Therefore, the short period terms must be excluded by averaging the Hamiltonian (Eq. 2) of 
the system over 𝑙𝑙1 and 𝑙𝑙2, where the conjugate momenta, 𝐿𝐿1 and 𝐿𝐿2, were included in the unperturbed 
terms to provide a smooth motion over the long period . 

 
The standard average definition is 𝑄̃𝑄 = 1

2𝜋𝜋 ∫ 𝑄𝑄2𝜋𝜋
0 𝑑𝑑𝑑𝑑, and the normalized Hamiltonian is given as 

 
ℋ̃ = ℋ̃0 + ℋ̃1 + ℋ̃2                                                                      (4) 

where 

ℋ̃0 = 𝛽𝛽1
2𝐿𝐿1

2 + 𝛽𝛽2
2𝐿𝐿2

2 ,                                                                       (5) 

ℋ̃1 = −4𝛽𝛽2 (𝐿𝐿1
4

𝐿𝐿2
6 ) ∑ {𝛼𝛼𝑗𝑗𝑗𝑗(𝑒𝑒1, 𝑒𝑒2)𝛽𝛽𝑗𝑗𝑗𝑗(𝑖𝑖1, 𝑖𝑖2)  cos(𝑗𝑗𝑔𝑔1 + 𝑘𝑘(ℎ2 − ℎ1))},

2

𝑗𝑗,𝑘𝑘=−2
                        (6) 

 
and the non-vanishing coefficients are 
 
𝛼𝛼00 = 𝛼𝛼01 = 𝛼𝛼02 = (2+3𝑒𝑒12)

2(1−𝑒𝑒2
2)3/2,  

𝛼𝛼20 = 𝛼𝛼2−2 = 𝛼𝛼2−1 = 𝛼𝛼21 = 𝛼𝛼22 = 5𝑒𝑒1
2

2(1 − 𝑒𝑒2
2)3/2 

𝛽𝛽00 = −1 + 3
2 (𝐴𝐴−1−1

2 + 𝐴𝐴−10
2 + 𝐴𝐴−11

2 + 𝐴𝐴1−1
2 + 𝐴𝐴10

2 + 𝐴𝐴11
2 ), 

𝛽𝛽01 = 3(𝐴𝐴−1−1𝐴𝐴−10 + 𝐴𝐴−10𝐴𝐴−11 + 𝐴𝐴1−1𝐴𝐴10 + 𝐴𝐴10𝐴𝐴11), 
𝛽𝛽02 = 3(𝐴𝐴−1−1𝐴𝐴−11 + 𝐴𝐴1−1𝐴𝐴11), 
𝛽𝛽20 = 3(𝐴𝐴−11𝐴𝐴1−1 + 𝐴𝐴−10𝐴𝐴10 + 𝐴𝐴−1−1𝐴𝐴11),  
𝛽𝛽2−2 = 3(𝐴𝐴−1−1𝐴𝐴1−1), 
𝛽𝛽2−1 = 3(𝐴𝐴−10𝐴𝐴1−1 + 𝐴𝐴−1−1𝐴𝐴10), 
𝛽𝛽21 = 3(𝐴𝐴−11𝐴𝐴10 + 𝐴𝐴−10𝐴𝐴11),  
𝛽𝛽22 = 3(𝐴𝐴−11𝐴𝐴11) 
 

ℋ̃2 = −2𝛽𝛽3 (𝐿𝐿1
6

𝐿𝐿2
8 ) ∑ {𝛼𝛼𝑗𝑗𝑗𝑗𝑗𝑗(𝑒𝑒1, 𝑒𝑒2)𝛽𝛽𝑗𝑗𝑗𝑗𝑗𝑗(𝑖𝑖1, 𝑖𝑖2)  cos(𝑗𝑗𝑔𝑔1 + 𝑠𝑠𝑔𝑔2 + 𝑘𝑘(ℎ2 − ℎ1))}

3

𝑗𝑗,𝑠𝑠,𝑘𝑘=−3
                  (7) 

 
 
 
 
The non-vanishing coefficients 𝛼𝛼𝑗𝑗𝑗𝑗𝑗𝑗(𝑒𝑒1, 𝑒𝑒2) and 𝛽𝛽𝑗𝑗𝑗𝑗𝑗𝑗(𝑖𝑖1, 𝑖𝑖2) can be found in Appendix I. 
 

Now the equations of motion can be written by using the Hamiltonian equations. For a system 
(qi, Qi), qi are the coordinates and Qi are the momenta with Hamiltonian  ℱ(qi, Qi, t).  

, and 

the normalized Hamiltonian is given as
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𝛽𝛽20 = 3(𝐴𝐴−11𝐴𝐴1−1 + 𝐴𝐴−10𝐴𝐴10 + 𝐴𝐴−1−1𝐴𝐴11),  
𝛽𝛽2−2 = 3(𝐴𝐴−1−1𝐴𝐴1−1), 
𝛽𝛽2−1 = 3(𝐴𝐴−10𝐴𝐴1−1 + 𝐴𝐴−1−1𝐴𝐴10), 
𝛽𝛽21 = 3(𝐴𝐴−11𝐴𝐴10 + 𝐴𝐴−10𝐴𝐴11),  
𝛽𝛽22 = 3(𝐴𝐴−11𝐴𝐴11) 
 

ℋ̃2 = −2𝛽𝛽3 (𝐿𝐿1
6

𝐿𝐿2
8 ) ∑ {𝛼𝛼𝑗𝑗𝑗𝑗𝑗𝑗(𝑒𝑒1, 𝑒𝑒2)𝛽𝛽𝑗𝑗𝑗𝑗𝑗𝑗(𝑖𝑖1, 𝑖𝑖2)  cos(𝑗𝑗𝑔𝑔1 + 𝑠𝑠𝑔𝑔2 + 𝑘𝑘(ℎ2 − ℎ1))}

3

𝑗𝑗,𝑠𝑠,𝑘𝑘=−3
                  (7) 

 
 
 
 
The non-vanishing coefficients 𝛼𝛼𝑗𝑗𝑗𝑗𝑗𝑗(𝑒𝑒1, 𝑒𝑒2) and 𝛽𝛽𝑗𝑗𝑗𝑗𝑗𝑗(𝑖𝑖1, 𝑖𝑖2) can be found in Appendix I. 
 

Now the equations of motion can be written by using the Hamiltonian equations. For a system 
(qi, Qi), qi are the coordinates and Qi are the momenta with Hamiltonian  ℱ(qi, Qi, t).  

� (4)

where

	

4 
 

 
 

3. CALCULATIONS OF THE LONG TERMS DYNAMICS  
 
 

In most cases, it is better to present the movement over the long term, especially when discussing 
exoplanets.  Therefore, the short period terms must be excluded by averaging the Hamiltonian (Eq. 2) of 
the system over 𝑙𝑙1 and 𝑙𝑙2, where the conjugate momenta, 𝐿𝐿1 and 𝐿𝐿2, were included in the unperturbed 
terms to provide a smooth motion over the long period . 

 
The standard average definition is 𝑄̃𝑄 = 1

2𝜋𝜋 ∫ 𝑄𝑄2𝜋𝜋
0 𝑑𝑑𝑑𝑑, and the normalized Hamiltonian is given as 

 
ℋ̃ = ℋ̃0 + ℋ̃1 + ℋ̃2                                                                      (4) 

where 

ℋ̃0 = 𝛽𝛽1
2𝐿𝐿1

2 + 𝛽𝛽2
2𝐿𝐿2

2 ,                                                                       (5) 

ℋ̃1 = −4𝛽𝛽2 (𝐿𝐿1
4

𝐿𝐿2
6 ) ∑ {𝛼𝛼𝑗𝑗𝑗𝑗(𝑒𝑒1, 𝑒𝑒2)𝛽𝛽𝑗𝑗𝑗𝑗(𝑖𝑖1, 𝑖𝑖2)  cos(𝑗𝑗𝑔𝑔1 + 𝑘𝑘(ℎ2 − ℎ1))},

2

𝑗𝑗,𝑘𝑘=−2
                        (6) 

 
and the non-vanishing coefficients are 
 
𝛼𝛼00 = 𝛼𝛼01 = 𝛼𝛼02 = (2+3𝑒𝑒12)

2(1−𝑒𝑒2
2)3/2,  

𝛼𝛼20 = 𝛼𝛼2−2 = 𝛼𝛼2−1 = 𝛼𝛼21 = 𝛼𝛼22 = 5𝑒𝑒1
2

2(1 − 𝑒𝑒2
2)3/2 

𝛽𝛽00 = −1 + 3
2 (𝐴𝐴−1−1

2 + 𝐴𝐴−10
2 + 𝐴𝐴−11

2 + 𝐴𝐴1−1
2 + 𝐴𝐴10

2 + 𝐴𝐴11
2 ), 

𝛽𝛽01 = 3(𝐴𝐴−1−1𝐴𝐴−10 + 𝐴𝐴−10𝐴𝐴−11 + 𝐴𝐴1−1𝐴𝐴10 + 𝐴𝐴10𝐴𝐴11), 
𝛽𝛽02 = 3(𝐴𝐴−1−1𝐴𝐴−11 + 𝐴𝐴1−1𝐴𝐴11), 
𝛽𝛽20 = 3(𝐴𝐴−11𝐴𝐴1−1 + 𝐴𝐴−10𝐴𝐴10 + 𝐴𝐴−1−1𝐴𝐴11),  
𝛽𝛽2−2 = 3(𝐴𝐴−1−1𝐴𝐴1−1), 
𝛽𝛽2−1 = 3(𝐴𝐴−10𝐴𝐴1−1 + 𝐴𝐴−1−1𝐴𝐴10), 
𝛽𝛽21 = 3(𝐴𝐴−11𝐴𝐴10 + 𝐴𝐴−10𝐴𝐴11),  
𝛽𝛽22 = 3(𝐴𝐴−11𝐴𝐴11) 
 

ℋ̃2 = −2𝛽𝛽3 (𝐿𝐿1
6

𝐿𝐿2
8 ) ∑ {𝛼𝛼𝑗𝑗𝑗𝑗𝑗𝑗(𝑒𝑒1, 𝑒𝑒2)𝛽𝛽𝑗𝑗𝑗𝑗𝑗𝑗(𝑖𝑖1, 𝑖𝑖2)  cos(𝑗𝑗𝑔𝑔1 + 𝑠𝑠𝑔𝑔2 + 𝑘𝑘(ℎ2 − ℎ1))}

3

𝑗𝑗,𝑠𝑠,𝑘𝑘=−3
                  (7) 

 
 
 
 
The non-vanishing coefficients 𝛼𝛼𝑗𝑗𝑗𝑗𝑗𝑗(𝑒𝑒1, 𝑒𝑒2) and 𝛽𝛽𝑗𝑗𝑗𝑗𝑗𝑗(𝑖𝑖1, 𝑖𝑖2) can be found in Appendix I. 
 

Now the equations of motion can be written by using the Hamiltonian equations. For a system 
(qi, Qi), qi are the coordinates and Qi are the momenta with Hamiltonian  ℱ(qi, Qi, t).  

�
(5)

4 
 

 
 

3. CALCULATIONS OF THE LONG TERMS DYNAMICS  
 
 

In most cases, it is better to present the movement over the long term, especially when discussing 
exoplanets.  Therefore, the short period terms must be excluded by averaging the Hamiltonian (Eq. 2) of 
the system over 𝑙𝑙1 and 𝑙𝑙2, where the conjugate momenta, 𝐿𝐿1 and 𝐿𝐿2, were included in the unperturbed 
terms to provide a smooth motion over the long period . 

 
The standard average definition is 𝑄̃𝑄 = 1

2𝜋𝜋 ∫ 𝑄𝑄2𝜋𝜋
0 𝑑𝑑𝑑𝑑, and the normalized Hamiltonian is given as 

 
ℋ̃ = ℋ̃0 + ℋ̃1 + ℋ̃2                                                                      (4) 

where 

ℋ̃0 = 𝛽𝛽1
2𝐿𝐿1

2 + 𝛽𝛽2
2𝐿𝐿2

2 ,                                                                       (5) 

ℋ̃1 = −4𝛽𝛽2 (𝐿𝐿1
4

𝐿𝐿2
6 ) ∑ {𝛼𝛼𝑗𝑗𝑗𝑗(𝑒𝑒1, 𝑒𝑒2)𝛽𝛽𝑗𝑗𝑗𝑗(𝑖𝑖1, 𝑖𝑖2)  cos(𝑗𝑗𝑔𝑔1 + 𝑘𝑘(ℎ2 − ℎ1))},

2

𝑗𝑗,𝑘𝑘=−2
                        (6) 

 
and the non-vanishing coefficients are 
 
𝛼𝛼00 = 𝛼𝛼01 = 𝛼𝛼02 = (2+3𝑒𝑒12)

2(1−𝑒𝑒2
2)3/2,  

𝛼𝛼20 = 𝛼𝛼2−2 = 𝛼𝛼2−1 = 𝛼𝛼21 = 𝛼𝛼22 = 5𝑒𝑒1
2

2(1 − 𝑒𝑒2
2)3/2 

𝛽𝛽00 = −1 + 3
2 (𝐴𝐴−1−1

2 + 𝐴𝐴−10
2 + 𝐴𝐴−11

2 + 𝐴𝐴1−1
2 + 𝐴𝐴10

2 + 𝐴𝐴11
2 ), 

𝛽𝛽01 = 3(𝐴𝐴−1−1𝐴𝐴−10 + 𝐴𝐴−10𝐴𝐴−11 + 𝐴𝐴1−1𝐴𝐴10 + 𝐴𝐴10𝐴𝐴11), 
𝛽𝛽02 = 3(𝐴𝐴−1−1𝐴𝐴−11 + 𝐴𝐴1−1𝐴𝐴11), 
𝛽𝛽20 = 3(𝐴𝐴−11𝐴𝐴1−1 + 𝐴𝐴−10𝐴𝐴10 + 𝐴𝐴−1−1𝐴𝐴11),  
𝛽𝛽2−2 = 3(𝐴𝐴−1−1𝐴𝐴1−1), 
𝛽𝛽2−1 = 3(𝐴𝐴−10𝐴𝐴1−1 + 𝐴𝐴−1−1𝐴𝐴10), 
𝛽𝛽21 = 3(𝐴𝐴−11𝐴𝐴10 + 𝐴𝐴−10𝐴𝐴11),  
𝛽𝛽22 = 3(𝐴𝐴−11𝐴𝐴11) 
 

ℋ̃2 = −2𝛽𝛽3 (𝐿𝐿1
6

𝐿𝐿2
8 ) ∑ {𝛼𝛼𝑗𝑗𝑗𝑗𝑗𝑗(𝑒𝑒1, 𝑒𝑒2)𝛽𝛽𝑗𝑗𝑗𝑗𝑗𝑗(𝑖𝑖1, 𝑖𝑖2)  cos(𝑗𝑗𝑔𝑔1 + 𝑠𝑠𝑔𝑔2 + 𝑘𝑘(ℎ2 − ℎ1))}

3

𝑗𝑗,𝑠𝑠,𝑘𝑘=−3
                  (7) 

 
 
 
 
The non-vanishing coefficients 𝛼𝛼𝑗𝑗𝑗𝑗𝑗𝑗(𝑒𝑒1, 𝑒𝑒2) and 𝛽𝛽𝑗𝑗𝑗𝑗𝑗𝑗(𝑖𝑖1, 𝑖𝑖2) can be found in Appendix I. 
 

Now the equations of motion can be written by using the Hamiltonian equations. For a system 
(qi, Qi), qi are the coordinates and Qi are the momenta with Hamiltonian  ℱ(qi, Qi, t).  

	     
×
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3. CALCULATIONS OF THE LONG TERMS DYNAMICS  
 
 

In most cases, it is better to present the movement over the long term, especially when discussing 
exoplanets.  Therefore, the short period terms must be excluded by averaging the Hamiltonian (Eq. 2) of 
the system over 𝑙𝑙1 and 𝑙𝑙2, where the conjugate momenta, 𝐿𝐿1 and 𝐿𝐿2, were included in the unperturbed 
terms to provide a smooth motion over the long period . 

 
The standard average definition is 𝑄̃𝑄 = 1

2𝜋𝜋 ∫ 𝑄𝑄2𝜋𝜋
0 𝑑𝑑𝑑𝑑, and the normalized Hamiltonian is given as 

 
ℋ̃ = ℋ̃0 + ℋ̃1 + ℋ̃2                                                                      (4) 

where 

ℋ̃0 = 𝛽𝛽1
2𝐿𝐿1

2 + 𝛽𝛽2
2𝐿𝐿2

2 ,                                                                       (5) 

ℋ̃1 = −4𝛽𝛽2 (𝐿𝐿1
4

𝐿𝐿2
6 ) ∑ {𝛼𝛼𝑗𝑗𝑗𝑗(𝑒𝑒1, 𝑒𝑒2)𝛽𝛽𝑗𝑗𝑗𝑗(𝑖𝑖1, 𝑖𝑖2)  cos(𝑗𝑗𝑔𝑔1 + 𝑘𝑘(ℎ2 − ℎ1))},

2

𝑗𝑗,𝑘𝑘=−2
                        (6) 

 
and the non-vanishing coefficients are 
 
𝛼𝛼00 = 𝛼𝛼01 = 𝛼𝛼02 = (2+3𝑒𝑒12)

2(1−𝑒𝑒2
2)3/2,  

𝛼𝛼20 = 𝛼𝛼2−2 = 𝛼𝛼2−1 = 𝛼𝛼21 = 𝛼𝛼22 = 5𝑒𝑒1
2

2(1 − 𝑒𝑒2
2)3/2 

𝛽𝛽00 = −1 + 3
2 (𝐴𝐴−1−1

2 + 𝐴𝐴−10
2 + 𝐴𝐴−11

2 + 𝐴𝐴1−1
2 + 𝐴𝐴10

2 + 𝐴𝐴11
2 ), 

𝛽𝛽01 = 3(𝐴𝐴−1−1𝐴𝐴−10 + 𝐴𝐴−10𝐴𝐴−11 + 𝐴𝐴1−1𝐴𝐴10 + 𝐴𝐴10𝐴𝐴11), 
𝛽𝛽02 = 3(𝐴𝐴−1−1𝐴𝐴−11 + 𝐴𝐴1−1𝐴𝐴11), 
𝛽𝛽20 = 3(𝐴𝐴−11𝐴𝐴1−1 + 𝐴𝐴−10𝐴𝐴10 + 𝐴𝐴−1−1𝐴𝐴11),  
𝛽𝛽2−2 = 3(𝐴𝐴−1−1𝐴𝐴1−1), 
𝛽𝛽2−1 = 3(𝐴𝐴−10𝐴𝐴1−1 + 𝐴𝐴−1−1𝐴𝐴10), 
𝛽𝛽21 = 3(𝐴𝐴−11𝐴𝐴10 + 𝐴𝐴−10𝐴𝐴11),  
𝛽𝛽22 = 3(𝐴𝐴−11𝐴𝐴11) 
 

ℋ̃2 = −2𝛽𝛽3 (𝐿𝐿1
6

𝐿𝐿2
8 ) ∑ {𝛼𝛼𝑗𝑗𝑗𝑗𝑗𝑗(𝑒𝑒1, 𝑒𝑒2)𝛽𝛽𝑗𝑗𝑗𝑗𝑗𝑗(𝑖𝑖1, 𝑖𝑖2)  cos(𝑗𝑗𝑔𝑔1 + 𝑠𝑠𝑔𝑔2 + 𝑘𝑘(ℎ2 − ℎ1))}

3

𝑗𝑗,𝑠𝑠,𝑘𝑘=−3
                  (7) 

 
 
 
 
The non-vanishing coefficients 𝛼𝛼𝑗𝑗𝑗𝑗𝑗𝑗(𝑒𝑒1, 𝑒𝑒2) and 𝛽𝛽𝑗𝑗𝑗𝑗𝑗𝑗(𝑖𝑖1, 𝑖𝑖2) can be found in Appendix I. 
 

Now the equations of motion can be written by using the Hamiltonian equations. For a system 
(qi, Qi), qi are the coordinates and Qi are the momenta with Hamiltonian  ℱ(qi, Qi, t).  

� (6)

and the non-vanishing coefficients are

4 
 

 
 

3. CALCULATIONS OF THE LONG TERMS DYNAMICS  
 
 

In most cases, it is better to present the movement over the long term, especially when discussing 
exoplanets.  Therefore, the short period terms must be excluded by averaging the Hamiltonian (Eq. 2) of 
the system over 𝑙𝑙1 and 𝑙𝑙2, where the conjugate momenta, 𝐿𝐿1 and 𝐿𝐿2, were included in the unperturbed 
terms to provide a smooth motion over the long period . 

 
The standard average definition is 𝑄̃𝑄 = 1

2𝜋𝜋 ∫ 𝑄𝑄2𝜋𝜋
0 𝑑𝑑𝑑𝑑, and the normalized Hamiltonian is given as 

 
ℋ̃ = ℋ̃0 + ℋ̃1 + ℋ̃2                                                                      (4) 

where 

ℋ̃0 = 𝛽𝛽1
2𝐿𝐿1

2 + 𝛽𝛽2
2𝐿𝐿2

2 ,                                                                       (5) 

ℋ̃1 = −4𝛽𝛽2 (𝐿𝐿1
4

𝐿𝐿2
6 ) ∑ {𝛼𝛼𝑗𝑗𝑗𝑗(𝑒𝑒1, 𝑒𝑒2)𝛽𝛽𝑗𝑗𝑗𝑗(𝑖𝑖1, 𝑖𝑖2)  cos(𝑗𝑗𝑔𝑔1 + 𝑘𝑘(ℎ2 − ℎ1))},

2

𝑗𝑗,𝑘𝑘=−2
                        (6) 

 
and the non-vanishing coefficients are 
 
𝛼𝛼00 = 𝛼𝛼01 = 𝛼𝛼02 = (2+3𝑒𝑒12)

2(1−𝑒𝑒2
2)3/2,  

𝛼𝛼20 = 𝛼𝛼2−2 = 𝛼𝛼2−1 = 𝛼𝛼21 = 𝛼𝛼22 = 5𝑒𝑒1
2

2(1 − 𝑒𝑒2
2)3/2 

𝛽𝛽00 = −1 + 3
2 (𝐴𝐴−1−1

2 + 𝐴𝐴−10
2 + 𝐴𝐴−11

2 + 𝐴𝐴1−1
2 + 𝐴𝐴10

2 + 𝐴𝐴11
2 ), 

𝛽𝛽01 = 3(𝐴𝐴−1−1𝐴𝐴−10 + 𝐴𝐴−10𝐴𝐴−11 + 𝐴𝐴1−1𝐴𝐴10 + 𝐴𝐴10𝐴𝐴11), 
𝛽𝛽02 = 3(𝐴𝐴−1−1𝐴𝐴−11 + 𝐴𝐴1−1𝐴𝐴11), 
𝛽𝛽20 = 3(𝐴𝐴−11𝐴𝐴1−1 + 𝐴𝐴−10𝐴𝐴10 + 𝐴𝐴−1−1𝐴𝐴11),  
𝛽𝛽2−2 = 3(𝐴𝐴−1−1𝐴𝐴1−1), 
𝛽𝛽2−1 = 3(𝐴𝐴−10𝐴𝐴1−1 + 𝐴𝐴−1−1𝐴𝐴10), 
𝛽𝛽21 = 3(𝐴𝐴−11𝐴𝐴10 + 𝐴𝐴−10𝐴𝐴11),  
𝛽𝛽22 = 3(𝐴𝐴−11𝐴𝐴11) 
 

ℋ̃2 = −2𝛽𝛽3 (𝐿𝐿1
6

𝐿𝐿2
8 ) ∑ {𝛼𝛼𝑗𝑗𝑗𝑗𝑗𝑗(𝑒𝑒1, 𝑒𝑒2)𝛽𝛽𝑗𝑗𝑗𝑗𝑗𝑗(𝑖𝑖1, 𝑖𝑖2)  cos(𝑗𝑗𝑔𝑔1 + 𝑠𝑠𝑔𝑔2 + 𝑘𝑘(ℎ2 − ℎ1))}

3

𝑗𝑗,𝑠𝑠,𝑘𝑘=−3
                  (7) 

 
 
 
 
The non-vanishing coefficients 𝛼𝛼𝑗𝑗𝑗𝑗𝑗𝑗(𝑒𝑒1, 𝑒𝑒2) and 𝛽𝛽𝑗𝑗𝑗𝑗𝑗𝑗(𝑖𝑖1, 𝑖𝑖2) can be found in Appendix I. 
 

Now the equations of motion can be written by using the Hamiltonian equations. For a system 
(qi, Qi), qi are the coordinates and Qi are the momenta with Hamiltonian  ℱ(qi, Qi, t).  

	      
×

4 
 

 
 

3. CALCULATIONS OF THE LONG TERMS DYNAMICS  
 
 

In most cases, it is better to present the movement over the long term, especially when discussing 
exoplanets.  Therefore, the short period terms must be excluded by averaging the Hamiltonian (Eq. 2) of 
the system over 𝑙𝑙1 and 𝑙𝑙2, where the conjugate momenta, 𝐿𝐿1 and 𝐿𝐿2, were included in the unperturbed 
terms to provide a smooth motion over the long period . 

 
The standard average definition is 𝑄̃𝑄 = 1

2𝜋𝜋 ∫ 𝑄𝑄2𝜋𝜋
0 𝑑𝑑𝑑𝑑, and the normalized Hamiltonian is given as 

 
ℋ̃ = ℋ̃0 + ℋ̃1 + ℋ̃2                                                                      (4) 

where 

ℋ̃0 = 𝛽𝛽1
2𝐿𝐿1

2 + 𝛽𝛽2
2𝐿𝐿2

2 ,                                                                       (5) 

ℋ̃1 = −4𝛽𝛽2 (𝐿𝐿1
4

𝐿𝐿2
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The equations of motion can be derived as:  

 

𝑞̇𝑞𝑖𝑖 = 𝑑𝑑𝑞𝑞𝑖𝑖
𝑑𝑑𝑑𝑑 = 𝜕𝜕ℱ

𝜕𝜕𝑄𝑄𝑖𝑖
,                        𝑄̇𝑄𝑖𝑖 = 𝑑𝑑𝑄𝑄𝑖𝑖

𝑑𝑑𝑑𝑑 = − 𝜕𝜕ℱ
𝜕𝜕𝑞𝑞𝑖𝑖

         
 
where 𝑡𝑡 referred to the time. 

 
 

4. STAR MASS LOSS 
 
 

The key process in star studies, generally and especially for massive stars, is the mass loss; that is, 
the slow change in the mass of the star with respect to its orbital period. This must be understood well 
along with its effect on the surrounding environment. This will then guarantee complete success in 
astrophysical applications. All stars are undergoing mass loss with the amount depending on the star's 
size and its evolution stage. For instance, the Sun is losing 7 billion tons per hour, while supergiant stars 
emit a larger amount of energy. 

 
In this study, the long period dynamics with mass loss will be treated by assuming the mass loss 

occurs isotropically. In addition, the mass loss rate will be varied depending on stellar evolutionary stage 
and the mechanism of mass loss. For more information about mass loss refer to Rahoma et al. (2009) and 
the references therein.  

 
To simplify the dynamics, the mass loss from mass 𝑚𝑚 will be assumed to be of the form 
 

𝑑𝑑
𝑑𝑑𝑑𝑑 𝑚𝑚 = 𝛼𝛼                                                                                 (8) 

 
where 𝛼𝛼 is a constant.  
 
 

5. NUMERICAL SIMULATIONS 
 
 

In this section, the simulated effect of mass loss on the exoplanet is described. The second 
companion in the binary star system is chosen to lose mass over time at different rates. The orbital 
element variations constructed from the Hamiltonian equations are investigated numerically. 

 
We suppose that a hierarchical triple system has the initial condition of 𝑎𝑎1 = 3 AU, 𝑒𝑒1 = 0.23, 

𝑖𝑖1 = 67°, 𝜔𝜔1 = 179° and  𝛺𝛺1 = 120° and 𝑎𝑎2 = 40 AU, 𝑒𝑒2 = 0.5, 𝑖𝑖2 = 45°, 𝜔𝜔2 = 120° and  𝛺𝛺2 = 15°, 
where the mass of 𝑚𝑚0 and 𝑚𝑚1 are chosen as 15 and 5 times the mass of the Sun, respectively, and the 
mass of the planet, 𝑚𝑚2, is 0.01 of the Sun’s mass. The integration is run over a long period of 5 × 105 
years. 

 
 
6. RESULTS, COMMENTS, AND DISCUSSION  
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The key process in star studies, generally and especially for 

massive stars, is the mass loss; that is, the slow change in the 

mass of the star with respect to its orbital period. This must 

be understood well along with its effect on the surrounding 

environment. This will then guarantee complete success in 

astrophysical applications. All stars are undergoing mass 

loss with the amount depending on the star's size and its 

evolution stage. For instance, the Sun is losing 7 billion tons 

per hour, while supergiant stars emit a larger amount of 

energy.

In this study, the long period dynamics with mass loss will 

be treated by assuming the mass loss occurs isotropically. 

In addition, the mass loss rate will be varied depending on 

stellar evolutionary stage and the mechanism of mass loss. 

For more information about mass loss refer to Rahoma et al. 

(2009) and the references therein. 

To simplify the dynamics, the mass loss from mass m will 
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where α is a constant. 

5. NUMERICAL SIMULATIONS

In this section, the simulated effect of mass loss on the 

exoplanet is described. The second companion in the binary 

star system is chosen to lose mass over time at different 

rates. The orbital element variations constructed from the 

Hamiltonian equations are investigated numerically.

We suppose that a hierarchical triple system has the 

initial condition of a
1
=3 AU, e

1
=0.23, i

1
=67°, ω

1
=179° and  

Ω
1
=120° and a

2
=40 AU, e

2
=0.5, i

2
=45°, ω

2
=120° and Ω
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=15°, 

where the mass of m
0
 and m

1
 are chosen as 15 and 5 times 

the mass of the Sun, respectively, and the mass of the planet, 

m
2
, is 0.01 M⊙. The integration is run over a long period of 

5 × 105 years.

6. RESULTS, COMMENTS AND DISCUSSION 

Figs. 2-6 show the variation of the orbital elements as a 

function of time for a planet orbiting a binary star system 

in which the second companion member loses mass. 

The initial conditions were chosen empirically. Smooth 

curves were presented as expected; therefore, the average 

technique is used to eliminate the short period terms.
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In Figs. 2-6, the orbital element evaluation is presented where 

the black line represents the case with no mass loss, the red line 

represents the case with mass loss = 10-6 M⊙/yr, the green line 

represents the case with mass loss = 2 × 10-6 M⊙/yr, the blue 

line represents the case with mass loss = 3 × 10-6 M⊙/yr, and the 

fuchsia line represents the case with mass loss = 4 × 10-6 M⊙/yr.  

It is noted that: 1) as the value of mass loss increases, the 

behavior of the orbital element evolution changes and becomes 

distant from the behavior of the black line; 2) even if all 

behaviors are periodic, the amplitude changes with the value of 

mass loss; 3) in the first approximately 15 to 20 × 104 years,  all 

behaviors nearly coincide; but after that time, the behaviors are 

completely different; and 4) in all figures, the secular term is 

imposed on the long period terms, where there is a slope in the 

curves.

7. CONCLUSIONS

Supported by observations, many exoplanets are orbiting 

binary star systems, with nearly 70 exoplanets found in 

binary stellar systems (Schwarz et al. 2015). This work 

studied the effects of stellar mass loss from one star in the 

inner binary system on its companion planetary orbit.  It 

was found that the mass loss causes the orbit of the planet 

to spiral outward. 

Using triple hierarchical system dynamics, the Hamiltonian 

of the system was constructed up to the second order with the 

relative semimajor axis of the binary star to the semimajor axis 

of the planet as a small parameter. Previous work regarding 

the effect of stellar mass loss on planetary orbits showed that 

the semimajor axis and mass production remained nearly 

constant (Veras et al. 2011; Mustill & Villaver 2012) unlike the 

results of this study, which adopted mass changes with time. 

The behavior of the orbital elements over a long time with 

different rates of mass loss was presented. Smooth curves over 

a long time resulted; As the short period terms are averaged. 

The trajectory presented an oscillatory behavior along the 

time where the oscillation period amplitude decreased with 

an increasing value of the outer companion mass loss. The 

accuracy could be improved by raising the order of expansion. 

The mass change models could be imposed on the equations.
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