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An analysis of light curves and spectra of observed gamma-ray bursts in gamma-ray ranges is frequently demanded 
because the prompt emission contains immediate details regarding the central engine of gamma-ray bursts (GRBs). We 
have revisited the relationship between the collimation-corrected peak luminosity and the spectral lag, investigating 
the lag-luminosity relationships in great detail by focusing on spectral lags resulting from all possible combinations of 
channels. Firstly, we compiled the opening angle data and demonstrated that the distribution of opening angles of 205 long 
GRBs is represented by a double Gaussian function having maxima at ~ 0.1 and ~ 0.3 radians. We confirmed that the peak 
luminosity and the spectral lag are anti-correlated, both in the observer frame and in the source frame. We found that, in 
agreement with our previous conclusion, the correlation coefficient improves significantly in the source frame. It should 
be noted that spectral lags involving channel 2 (25-50 keV) yield high correlation coefficients, where Swift/Burst Alert 
Telescope (BAT) has four energy channels (channel 1: 15-25 keV, channel 2: 25-50 keV, channel 3: 50-100 keV, channel 4: 
100-200 keV). We also found that peak luminosity is positively correlated with peak energy. 
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1. INTRODUCTION

Gamma-ray bursts (GRBs) are extremely energetic 

phenomena in the universe and their peak energy in their 

spectra ranges from ~10 to ~400 keV (e.g., Barraud et al. 2003; 

Piran 2004; Zhang 2007). They are considered to be tracers 

of star formation history in the early universe because GRBs, 

especially long bursts, appear to be associated with the death 

of massive stars (Woosley 1993; Paczyński 1998; MacFadyen 

& Woosley 1999). Since they were first detected in the late 

1960s (Klebesadel et al. 1973), we have obtained extensive 

information on observed GRBs with follow-up observations 

of afterglow (e.g., Costa et al. 1997; Frail et al. 1997; Metzger 

et al. 1997; van Paradijs et al. 1997). In part, this is because 

not only are they brief, but it is also impractical to determine 

their distance with observations in gamma-ray ranges. 

Nonetheless, bearing in mind that the prompt emission 

contains immediate details on the central engine, an analysis 

of light curves and spectra of the observed GRBs in gamma-

ray ranges is frequently demanded (e.g., Chang 2012).

With the successful launching of space missions (such 

as Swift and Fermi), several empirical relationships between 

various properties of the light curves of prompt gamma-

ray emissions and observed GRB energetics have been 

established as standard candles at a cosmological distance 

scale. Familiar relationships include that of the variability 

and the isotropic peak luminosity (Fenimore & Ramirez-Ruiz 

2000; Reichart et al. 2001), of the number of peaks of GRB 

light curves and the isotropic luminosity (Schaefer 2003), 

and of the spectral lag and the isotropic peak luminosity 

(Norris et al. 2000; Norris 2002; Gehrels et al. 2006; Zhang et 

al. 2006; Schaefer 2007; Hakkila et al. 2008; Zhang et al. 2008; 

Ukwatta et al. 2010, 2012; Qi & Lu 2012). In addition, emission 

properties of GRBs are studied in terms of the peak energy 

of the prompt spectrum and prompt light curves (Fenimore 

et al. 1996; Kobayashi et al. 1997; Beloborodov et al. 1998; 
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Fenimore 1999; Chang & Yi 2000; Lamb et al. 2004; Liang 

& Dai 2004; Liang et al. 2004). Among all of these, the most 

notable relationships involve the correlation between peak 

energy and isotropic energy (Amati et al. 2002), jet-corrected 

energy (Ghirlanda et al. 2004; Liang & Zhang 2005; Ghirlanda 

et al. 2006, 2012), and isotropic peak luminosity (Schaefer 

2003; Wei & Gao 2003; Yonetoku et al. 2004). These issues 

obviously depend on the degree of beaming in GRB emission 

(Kumar 1999; Kumar & Piran 2000). For instance, the amount 

of collimation can adjust the inferred energy or luminosity 

by several orders of magnitude from a presumed isotropic 

energy.

It is widely accepted that the fireball model explains 

both the prompt emission and afterglow, in which highly 

relativistic internal and/or external shocks with a Lorentz 

factor ≥100 collide with each other and are subsequently 

decelerated by the ambient circumburst medium (Mészáros 

& Rees 1993; Rees & Mészáros 1994; Kobayashi et al. 1997; 

Daigne & Mochkovitch 1998, 2000). The shock should be 

basically confined to a collimated narrow cone according 

to the special relativistic effects due to large Lorentz factors, 

resulting in afterglow flux that has been observed to steepen 

in many cases (Chevalier & Li 1999; Rhoads 1999; Sari et 

al. 1999; Frail et al. 2001; Panaitescu & Kumar 2001, 2002; 

Burrows & Racusin 2007). The peak energy of the observed 

GRBs is an important quantity in the fireball model in 

that the peak energy in the source frame depends on the 

fireball bulk Lorentz factor. To know the total energy budget 

of GRBs is also key to understanding the progenitors and 

central engines of these enormous explosions. In this sense, 

those correlations mentioned above can shed light on the 

radiation processes for the prompt GRB emission (Nava et 

al. 2006).

In this study, we revisit the analysis of Chang (2012), in 

which the lag-luminosity relation in the GRB source frame is 

examined using the collimation-corrected peak luminosity 

rather than the isotropic peak luminosity. Chang (2012) 

noted that if a lag-luminosity relationship in the source frame 

indeed exists, the collimation-correction luminosity should 

be considered to obtain a correct relationship, otherwise the 

luminosity of the individual GRB is likely to be overestimated 

by several orders of magnitude because of filling factors 

of the GRB jet. Most previous investigations used spectral 

lags extracted in the observer-frame and the isotropic peak 

luminosity (e.g., Ukwatta et al. 2010, 2012) until Chang (2012) 

computed and considered collimation-corrected luminosity 

based on bulk Lorentz factors archived in the published 

literature. It is fair to point out, however, that a larger dataset is 

required to increase the statistical significance of correlations 

found in Chang (2012). Having more GRBs at hand presently, 

it will be beneficial to update reported correlations and 

verify whether the conclusions drawn from an earlier GRB 

sample still hold. This is the main goal of this paper. In doing 

so, we investigate the lag-luminosity relationship in great 

detail by looking at spectral lags resulting from all possible 

combinations of channels, rather than taking into account 

only the spectral lag between channels 2 and 3 as used in 

earlier research, Swift/Burst Alert Telescope (BAT) has four 

energy channels (channel 1: 15-25 keV, channel 2: 25-50 keV, 

channel 3: 50-100 keV, channel 4: 100-200 keV).

Over the course of the analysis, we compiled the opening 

angles of 205 long GRBs, demonstrating that its distribution 

is bimodal. As the physical property of GRBs critically 

depends on whether the geometry of the gamma-ray 

emitting ejecta is spherical or jet-like (Harrison et al. 1999; 

Kulkarni et al. 1999; Meszaros & Rees 1999; Sari et al. 1999), 

the jet opening angle of GRBs is an important quantity to 

measure. Unfortunately, however, the jet opening angle is 

difficult to reliably estimate because it requires observations 

of an achromatic jet break time in the power-law decay 

of the afterglow emission (Harrison et al. 1999; Sari et 

al. 1999; O’Brien et al. 2006; Ryan et al. 2015); as such, 

these statistical attributes are indeterminate. We further 

investigate the relationship between peak luminosity and 

peak energy because peak energy is somehow related to the 

jet angle via the bulk Lorentz factor.

This paper is organized as follows. We begin with brief 

descriptions of the distribution of opening angles of long GRB 

jets in Section 2. We present results of analysis and discuss the 

correlation between spectral lag and peak luminosity as well 

as the correlation between peak energy and peak luminosity 

in Sections 3 and 4, respectively. Finally, we summarize and 

conclude by discussing the implications of our findings in 

Section 5.

2. DISTRIBUTION OF OPENING ANGLES

We statistically examine here the opening angles of long 

GRBs, which are archived together with short GRBs in Ryan 

et al. (2015). There, jet angles of the long and short GRBs 

detected by the Swift satellite are derived from light curves 

of afterglows, assuming a uniform circumburst medium. 

Because large Lorentz factors simply imply strong beaming 

of the radiation, the jet opening angle ∆θ
opening

 can be 

basically defined by ∆θ
opening

=1/Γ
0
 , where the bulk Lorentz 

factor Γ
0
 is calculated using the observed light curves of the 

afterglow (e.g., Sari et al. 1999). Two assumptions can be 

made in estimating Γ
0
: a homogeneous circumburst medium 

with a typical density value of n
0
~1 cm-3 or a wind density 
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profile of n(r)∝r-2 (e.g., Mirabal et al. 2003). It is interesting 

to note here that though a wind profile is expected based 

on the premise that GRBs are associated with the death of 

a massive star, most of GRBs are consistent with a constant 

density environment, and only a small portion exhibits a 

wind profile.

In Fig. 1, we show that the distribution of opening angles 

of the long GRBs is bimodal, which is well represented 

by a double Gaussian function having maxima at ~0.1 

and ~0.3 radians rather than a single Gaussian function 

(cf., Gao & Dai 2010). The number of GRBs is counted in 

bins 0.01 radians wide resulting in a histogram to which 

a double Gaussian function is fitted by adjusting six 

parameters simultaneously. The thick curve represents 

the best fit of the double Gaussian function. It should be 

noted, in comparison, that the distribution using the pre-

Swift measurements in particular is often suggested to be a 

Poisson distribution or a fairly broad Gaussian distribution 

appearing similar to the uniform distribution (e.g., Frail et 

al. 2001; Bloom et al. 2003; Racusin et al. 2009). To compare 

the goodness of the single and double Gaussian fits we 

compared reduced chi-square values and obtained 0.31 and 

0.17, respectively. To make sure we have repeated fitting 

processes with bin sizes of 0.05 and 0.005 and came to the 

same conclusions. We suspect that the bimodal distribution 

of jet opening angles can be explained either by the fact that 

GRBs in origin are due to two populations with broad and 

narrow jets or because the energy injection from the source 

to outflow is sporadic rather than continuous, as has been 

repeatedly suggested (Panaitescu et al. 2006; Schady et al. 

2007; Curran et al. 2008).

3. SPECTRAL LAG AND LUMINOSITY

Here, we investigate the relationship between the spectral 

lag and the peak luminosity. For spectral lags in the observer 

frame, we have used data from Ukwatta et al. (2010) and 

Kawakubo et al. (2015). Because Swift/BAT has four energy 

channels (channel 1: 15-25 keV, channel 2: 25-50 keV, channel 

3: 50-100 keV, channel 4: 100-200 keV), six observed spectral 

lags can be defined. We denote the spectral lag between 

channel i and channel j as τij. We choose GRBs only whose 

spectral lag is positive, i.e., only those in whose light curves 

the hard photons arrive earlier than the soft ones. While the 

spectral lag in the observer frame is measured with observed 

light curves of two arbitrary energy channels, the two energy 

channels in the observer frame correspond to a different pair 

of energy channels in the GRB source frame as a result of the 

cosmological expansion. Hence, effects of the expanding 

universe should be taken into account, i.e., time dilation 

and redshift in energy, to study physical properties in the 

source frame. Two corresponding corrections are required: 

1) to correct for the time dilation effect by multiplying the 

spectral lag value in the observer frame by (1+z)-1, and 2) to 

take into account the fact that the observed energy channels 

correspond to different energy channels in the source 

frame. Though the second correction is not straightforward, 

an approximate correction can be made based on the 

assumption that the pulse width is proportional to the energy 

(Fenimore et al. 1995; Gehrels et al. 2006; Zhang et al. 2009). 

Alternatively, a simpler second correction can be made 

by defining the two energy channels in the source frame 

to project those two channels into the observer frame and 

extract spectral lags between them using the relationship 

E
observer

=E
source

/(1+z), as in Ukwatta et al. (2010, 2012). For the 

isotropic peak luminosity L
iso

, data of GRBs are adopted from 

Ukwatta et al. (2010, 2012) and Kawakubo et al. (2015). We 

have subsequently selected GRBs whose redshifts and jet 

opening angles are known to further analyze the relationship 

of collimation-corrected peak luminosity L
coll

 in the source 

frame. We have derived the collimation-corrected peak 

luminosity using the opening angles shown in Fig. 1. We have 

basically followed the method used in Chang (2012) for the 

current analysis.

In Fig. 2, as an example, we show the peak luminosity, L
iso

 

or L
coll

, versus the spectral lag between channel 2 and channel 

3 τ
23

 in a log-log plot, obtained from 58 or 54 long GRBs 

detected by the Swift satellite. In the top and bottom panels, 

results of the isotropic peak luminosity and the collimation-

N
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Fig. 1. Distribution of opening angles of long GRBs. The number of GRBs 
is counted in bins 0.01 radians wide. The thick curve represents the best 
fit of a double Gaussian function.
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corrected peak luminosity are shown, respectively. In 

the left and right panels, using GRBs whose redshifts are 

known, results of the observer frame and the source frame 

are shown, respectively. Thick straight lines represent the 

best fit of the data obtained by the linear least-squares 

method. Parameters of the best fit are given in Table 1. We 

also provide the linear Pearson’s correlation coefficients of 

the relationship with null probabilities in Tables 2 and 3 for 

results for the spectral lag parameters τij defined by other 

combinations of channels. As reported in Chang (2012), there 

is an anti-correlation between the peak luminosity and the 

spectral lag. In agreement with the previous conclusion, the 

correlation coefficient improves significantly in the source 

frame. Because GRBs are believed to be beamed, it is natural 

to expect that the collimation-corrected peak luminosity may 

correlate with the spectral lag. According to what we found in 

Table 3, the collimation-corrected luminosity correlates in a 

similar way with the spectral lag, except that the correlations 

are somewhat looser. As for the correlations resulting from six 

spectral lags in combination with different channels, spectral 

lags involving channels 3 and 4 end up with high correlation 

coefficients, i.e., τ
34

.

4. PEAK ENERGY AND LUMINOSITY

Because the jet opening angle is inversely proportional 

to the bulk Lorentz factor, it is then reasonable to suspect 

that the peak energy and the peak luminosity should be 

correlated even though the physical mechanisms leading 
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Fig. 2. Peak luminosity Liso or Lcoll versus spectral lag τ23. In the top and bottom panels, results of the isotropic peak luminosity and 
the collimation-corrected peak luminosity are shown, respectively. In the left and right panels, results of the observer frame and 
the source frame are shown, respectively. Thick straight lines represent the best fit of the data obtained by the linear least-squares 
method.



251 http://janss.kr 

Yun-A Jo & Heon-Young Chang   Correlation of Liso with τ and Ep of the Observed GRBs

to these correlations are still unclear (Kumar & Piran 

2000; Eichler & Levinson 2004; Zhang & Choi 2008; Nava 

et al. 2008, 2010; Ghirlanda et al. 2011; Lazzati et al. 2011; 

Nava et al. 2012; Zhang et al. 2012). In fact, using a dataset 

of 11 Burst And Transient Source Experiment (BATSE) 

long GRBs in the observer frame, Yonetoku et al. (2004) 

first derived such a relationship, i.e., that between peak 

energy and isotropic peak luminosity. Some recent studies 

qualitatively draw a conclusion that short and long bursts 

should follow the same the peak energy and the peak 

luminosity relationship (Ghirlanda et al. 2009; Zhang et al. 

2009, 2012; Qin & Chen 2013). This conclusion is different 

from the cases of Amati and Ghirlanda relationship, which 

are derived from long bursts but are not followed by the 

majority of short bursts (Amati 2006; Ghirlanda et al. 2009). 

Motivated by the current situation, we now investigate the 

peak energy and the collimation-corrected peak luminosity 

relationship of GRBs in the source frame.

In Fig. 3, we show the peak luminosity, L
iso

 or L
coll

, versus 

the peak energy in log-log plot, obtained from 39 long GRBs 

detected by the Swift satellite, as shown in Fig. 2. In the top and 

bottom panels, results of the isotropic peak luminosity and the 

collimation-corrected peak luminosity are shown, respectively. 

In the left and right panels, using long GRBs whose redshifts are 

known, results of the observer frame and the source frame are 

shown, respectively. The observer-frame peak energy Ep,o and 

the source-frame peak energy Ep,s are related by Ep,s=Ep,o(1+z), 

where Ep,o is derived as Ep,o=(2+α)E
0
 from the spectrum, of which 

α and E
0
 are the lower energy index and break energy fitted with 

the Band function, respectively (Band et al. 1993). Thick straight 

Table 1. Best fit y = Ax + B

Observer frame Source frame
A B A B

τ12-Liso -0.25382 52.70837 -0.50075 53.25362
τ13-Liso -0.16435 52.55990 -0.50432 53.41046
τ14-Liso -0.35277 53.12920 -0.63849 53.87498
τ23-Liso -0.31710 52.81496 -0.63358 53.44567
τ24-Liso -0.34029 53.02610 -0.56549 53.60150
τ34-Liso -0.44339 53.14270 -0.68426 53.62907
τ12-Lcoll -0.26930 50.88547 -0.51557 51.41642
τ13-Lcoll -0.23071 50.85315 -0.60112 51.72444
τ14-Lcoll -0.38714 51.38757 -0.71083 52.19940
τ23-Lcoll -0.34262 51.00053 -0.68706 51.66080
τ24-Lcoll -0.35592 51.23411 -0.61264 51.86299
τ34-Lcoll -0.41489 51.24145 -0.68472 51.78703
Ep-Liso 0.75566 50.45132 1.23940 49.12518
Ep-Lcoll 0.73324 48.68294 1.32832 47.07108

Table 2. Linear Pearson’s and Spearman’s correlation coefficients (Corr. Coe.) and null probabilities 
(Prob.) of the relationship between spectral lag τij and isotropic peak luminosity Liso

τij
Observer frame Source frame

Pearson’s Spearman’s Pearson’s Spearman’s
Corr. Coe. Prob. Corr. Coe. Prob. Corr. Coe. Prob. Corr. Coe. Prob.

τ12 -0.27464 0.03694 -0.24273 0.06639 -0.48040 0.00014 -0.47643 0.00016
τ13 -0.16125 0.22242 -0.15453 0.24256 -0.40976 0.00127 -0.40586 0.00143
τ14 -0.32737 0.03432 -0.32349 0.03664 -0.50341 0.00068 -0.47737 0.00139
τ23 -0.31793 0.01501 -0.29669 0.02373 -0.53166 1.75e-05 -0.50658 4.96e-05
τ24 -0.34427 0.02558 -0.38767 0.01119 -0.48929 0.00101 -0.52648 0.00034
τ34 -0.42558 0.00691 -0.42555 0.00692 -0.57330 0.00014 -0.55398 0.00025

Table 3. Linear Pearson’s and Spearman’s correlation coefficients (Corr. Coe.) and null probabilities 
(Prob.) of the relationship between spectral lag τij and collimation-corrected peak luminosity Liso

τij
Observer frame Source frame

Pearson’s Spearman’s Pearson’s Spearman’s
Corr. Coe. Prob. Corr. Coe. Prob. Corr. Coe. Prob. Corr. Coe. Prob.

τ12 -0.26110 0.05652 -0.27034 0.04803 -0.43805 0.00092 -0.43091 0.00114
τ13 -0.19455 0.15077 -0.20667 0.12646 -0.42112 0.00123 -0.40458 0.00198
τ14 -0.31123 0.04483 -0.37041 0.01575 -0.49433 0.00088 -0.52808 0.00033
τ23 -0.29609 0.02971 -0.28832 0.03449 -0.49803 0.00013 -0.48412 0.00021
τ24 -0.31106 0.04495 -0.41652 0.00607 -0.46622 0.00186 -0.53440 0.00027
τ34 -0.34354 0.03225 -0.35965 0.02453 -0.50502 0.00104 -0.49656 0.00130
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lines represent the best fit of the data obtained by the linear least-

squares method. Parameters of the best fit are given in Table 1.  

In Table 4, we provide the linear Pearson’s correlation 

coefficients of the relationship with null probabilities. In 

agreement with earlier claims (Yonetoku et al. 2004; Nava 

et al. 2008; Ghirlanda et al. 2009; Nava et al. 2012; Zhang et 

al. 2012), we have found that they are positively correlated. 

The collimation-corrected luminosity correlates with the 

peak energy more loosely. We also note the correlations are 

significantly improved when the parameters in the source frame 

are considered.
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Fig. 3. Peak luminosity Liso or Lcoll versus peak energy Ep,o or Ep,s. In the top and bottom panels, results of the isotropic peak 
luminosity and the collimation-corrected peak luminosity are shown, respectively. In the left and right panels, results of the 
observer frame and the source frame are shown, respectively. Thick straight lines represent the best fit of the data obtained by the 
linear least-squares method.

Table 4. Linear Pearson’s and Spearman’s correlation coefficients (Corr. Coe.) and null probabilities (Prob.) of the relationship 
between peak energy and peak luminosity

Observer frame Source frame
Pearson’s Spearman’s Pearson’s Spearman’s

Corr. Coe. Prob. Corr. Coe. Prob. Corr. Coe. Prob. Corr. Coe. Prob.
Ep-Liso 0.43248 0.00532 0.49958 0.00103 0.66446 2.93e-06 0.67508 1.77e-06
Ep-Lcoll 0.36077 0.02220 0.45333 0.00331 0.61834 2.12e-05 0.65666 4.19e-06
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5. SUMMARY AND CONCLUSIONS

As an extension of the Ukwatta et al. (2010, 2012) rela-

tionship in which the isotropic peak luminosity and the 

spectral lag is anti-correlated in the source frame, Chang 

(2012) reported the relationship between the collimation-

corrected peak luminosity and the spectral lag in the source 

frame using 12 long GRBs, detected by the Swift/BAT, whose 

redshifts and jet opening angles are archived in the published 

literature. Such a correlation would contribute to properly 

understanding the underlying process of the gamma-ray 

radiation of GRBs. In the present analysis, we have revisited 

the correlations found in Chang (2012) using a larger dataset 

to increase the statistical significance. We have investigated 

the lag-luminosity relationship in great detail by looking 

at spectral lags resulting from all possible combinations of 

channels rather than taking into account only the spectral 

lag between channels 2 and 3. We have also compiled all the 

opening angle data published in the literature.

Our main findings and implications are as follows:

(1) The distribution of opening angles of 205 long GRBs 

is bimodal and well represented by a double Gaussian 

function having maxima at ~0.1 and ~0.3 radians. We 

suspect that the bimodal distribution of jet opening angles 

can be explained either by the fact that GRBs in origin 

are due to two populations with broad and narrow jets 

or because energy injection from the source to outflow is 

sporadic rather than continuous.

(2) The anti-correlation between the peak luminosity, L
iso

 

or L
coll

, and spectral lag is confirmed both in the observer 

frame and in the source frame. In agreement with the 

previous conclusion, the correlation coefficient improves 

significantly in the source frame. The collimation-corrected 

luminosity correlates with the spectral lag less tightly. 

As for the correlations resulting from six spectral lags in 

combination with different channels, it is found that spectral 

lags involving channel 3 and 4 end up with high correlation 

coefficients, i.e., τ
34

.

(3) Peak luminosity, L
iso

 or L
coll

, is positively correlated 

with peak energy. We also note that the correlations are 

significantly improved in the source frame. Because the jet 

opening angle is inversely proportional to the bulk Lorentz 

factor, it is natural to expect a positive correlation given the 

negative correlation between the jet opening angle and peak 

energy.
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